Hosted on GitHub Pages — Theme by orderedlist
Researcher, CyberAgent AI Lab
人工知能、強化学習、自然言語生成、機械学習、プランニング、グラフ探索、医用画像処理
Morimura, T., Sakamoto, M., Jinnai, Y., Abe, K., & Ariu, K. (2024). Filtered Direct Preference Optimization. The 2024 Conference on Empirical Methods in Natural Language Processing. (EMNLP-24)
PAPER CODE
Jinnai Y, Ariu K. Hyperparameter-Free Approach for Faster Minimum Bayes Risk Decoding. In Findings of the Association for Computational Linguistics. (ACL-24 Findings)
PAPER CODE TALK
Jinnai Y, Honda U, Morimura T, Zhang P. Generating Diverse and High-Quality Texts by Minimum Bayes Risk Decoding. In Findings of the Association for Computational Linguistics. (ACL-24 Findings)
PAPER CODE TALK
Jinnai Y, Morimura T, Honda U, Ariu K, Abe K. Model-based minimum bayes risk decoding. Proc. 41st International Conference on Machine Learning. (ICML-24)
PAPER CODE TALK
Ohashi A, Honda U, Morimura T, Jinnai Y. 2024. On the True Distribution Approximation of Minimum Bayes-Risk Decoding. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics. (NAACL-24)
PAPER CODE TALK
Lecarpentier E, Abel D, Asadi K, Jinnai Y, Rachelson E, Littman Michael L. 2021. Lipschitz Lifelong Reinforcement Learning. Proc. 35th AAAI conference on Artificial Intelligence. (AAAI-21)
PAPER POSTER CODE
Y. Jinnai, J. Park, M.C. Machado, and G.D. Konidaris. Exploration in Reinforcement Learning with Deep Covering Options. Accepted, Proceedings of the Eighth International Conference on Learning Representations. (ICLR-20)
PAPER
Wang L*, Zhao Y*, Jinnai Y, Tian Y, Fonseca R. 2020. AlphaX: eXploring Neural Architectures with Deep Neural Networks and Monte Carlo Tree Search. Proc. 34th AAAI conference on Artificial Intelligence (AAAI-20) *These authors contributed equally to this work.
PAPER CODE
Jinnai Y. Park JW, Abel D, Konidaris G. 2019. Discovering Options for Exploration by Minimizing Cover Time. Proc. 36th International Conference on Machine Learning. (ICML-19)
PAPER CODE
Jinnai Y, Abel D, Hershkowitz E, Littman M, Konidaris G. 2018. Finding Options that Minimize Planning Time. Proc. 36th International Conference on Machine Learning. (ICML-19)
PAPER CODE
Abel D, Arumugam D, Asadi K, Jinnai Y, Littman M, Wong L, 2019. State Abstraction as Compression in Apprenticeship Learning. Proc. 33rd AAAI Conference on Artificial Intelligence (AAAI-19).
PAPER
Abel D*, Jinnai Y*, Guo Y, Konidaris G, Littman M. 2018. Policy and Value Transfer for Lifelong Reinforcement Learning. Proc. 35th International Conference on Machine Learning. *These authors contributed equally to this work.
PAPER POSTER CODE
Jinnai Y, Fukunaga A. 2017. Learning to Prune Dominated Action Sequences in Online Black-box Planning. Proc. 31st AAAI Conference on Artificial Intelligence (AAAI-17)
PAPER SLIDES CODE
Jinnai Y, Fukunaga A. 2016. Automated Creation of Efficient Work Distribution Functions for Parallel Best-First Search. Proc. 19th International Conference on Automated Planning and Scheduling (ICAPS-16)
PAPER SLIDES VIDEO
Jinnai Y, Fukunaga A. 2016. Abstract Zobrist Hashing: An Efficient Work Distribution Method for Parallel Best-First Search. Proc. 30th AAAI Conference on Artificial Intelligence (AAAI-16)
PAPER POSTER
Jinnai Y. 2024. Does Cross-Cultural Alignment Change the Commonsense Morality of Language Models? The 2nd Workshop on Cross-Cultural Considerations in NLP (C3NLP Workshop at ACL 2024). Best Paper Award.
PAPER TALK MODEL DATASET
Morimura T, Sakamoto M, Jinnai Y, Abe K, Ariu K. 2024. Filtered Direct Preference Optimization. ICML 2024 Workshop on Models of Human Feedback for AI Alignment.
PAPER CODE
Jinnai Y, Morimura T, Ariu K, Abe K. 2024. Regularized Best-of-N Sampling to Mitigate Reward Hacking for Language Model Alignment. ICML 2024 Workshop on Models of Human Feedback for AI Alignment.
PAPER CODE
Jinnai Y, Abel D, Park JW, Hershkowitz DE, Littman M, Konidaris G. 2019. Skill Discovery with Well-Defined Objectives. ICLR Worshop on Structure and Priors in Reinforcement Learning.
PAPER
Jinnai Y, Fukunaga A. 2017. A Graph-Partitioning Based Approach for Parallel Best-First Search. ICAPS 2017 Workshop on Heuristic and Search for Domain-Independent Planning (HSDIP). This paper summarizes work which will appear in a JAIR article.
PAPER SLIDES POSTER
修士
Jinnai Y., 2017. On Hash-Based Work Distribution Methods for Parallel Best-First Search. Thesis Advisor: Alex Fukunaga. University of Tokyo. PAPER
学士
陣内 佑, 2015. マルチコアマシンにおける並列A*探索の探索オーバーヘッドの解析とアルゴリズムの再評価. (指導教官: 福永 Alex). 東京大学. PAPER
強化学習 (第2版)
強化学習 (第2版)を共訳しました。なお、英語の原著は無料で公開されています。
強化学習を専門として学ぶ方は原著も読むと良いと思っています。
ヒューリスティック探索
ヒューリスティック探索の入門書を日本語で書いています。
みんなのデータ構造
みんなのデータ構造はPat Morin教授が執筆しオープンソース(CC BY)で公開されているデータ構造の入門教科書Open Data Structuresを日本語に翻訳したものです。
日本語版の書籍そのものはCC BYライセンスではありませんが、原稿テキストおよび原稿のPDFをGithubでCC BYで公開しています (レイアウト・スタイルは書籍版と異なります)。
BOOK
2016年度冬学期 (東京大学)
TA: 寺子屋 (学際科学科に進学する文科出身の2年生の数学のフォローアップをするプログラム)
2016年度夏学期 (東京大学)
TA: 情報工学実験
2015年度 (東京都立多摩科学技術高校)
東京都立多摩科学技術高校にて非常勤講師。スーパーサイエンスハイスクール (SSH)事業の一環として海外での科学技術シンボジウム(Global Science Link)での研究発表を行う高校生に研究発表の準備のためのポスター作成、口頭発表方法を教えました。
2015年度冬学期 (東京大学)
TA: 寺子屋 (学際科学科に進学する文科出身の2年生の数学のフォローアップをするプログラム)
2015年度夏学期 (東京大学)
TA: 理科生のための初年次ゼミナール
TA: 情報工学実験
2013年9月~2016年8月 Resident assistant for international students at University of Tokyo International lodge, Komaba lodge
プログラミング言語
Proficient: C++11, Python 3
Experienced: C, C#, Objective-C, Rust, Java, Ruby, JavaScript, Common Lisp, Scheme, Haskell, Racket, Prolog, R, bash, gawk, MATLAB, Processing, Lua
Tools
git, CircleCI, Emacs, Visual Studio Code, Docker, AWS, Azure DevOps, weights and biases, GCP, torque job scheduler