

A Graph Partitioning-Based
 Approach for Parallel Best-First Search

Yuu Jinnai1　 Alex Fukunaga2

The University of Tokyo1,2

RIKEN Center for Advanced Intelligence Project1

*This presentation is based on Section 5 of the journal paper
 (Jinnai&Fukunaga’17)

Why Parallel Algorithms?

Supercomputer (TOP 500)

https://www.top500.org/statistics/perfdevel/

Why Parallel A*?

● Larger aggregated memory (with distributed environment)
– potentially able to solve instances which sequential A*

cannot solve due to memory limitation
● Walltime speedup

Subtree Distribution
Initial
Node

Process 0 Process 1 Process 2 Process 3

・
・
・

・
・
・

・
・
・

・
・
・

Subtree Distribution
Initial
Node

Process 0 Process 1 Process 2 Process 3

・
・

Dynamic Load Balancing Approach
Work Stealing Approach (Rao&Kumar’87)

Process 0 Process 1

Send me a job!

Dynamic Load Balancing Approach

Process 0 Process 1

Work Stealing Approach (Rao&Kumar’87)

Here.

Send me a job!

Dynamic Load Balancing Approach

Process 0 Process 1

Work Stealing Approach (Rao&Kumar’87)
● Incurs duplicated nodes (for graph search)
● Incurs coordination overhead

Here.

Send me a job!

Coordination
overhead

Duplicated
Nodes!

Duplicated
Nodes!

Static Load Balancing Approach (Hashing)

● A global hash function assigns each state to a unique process
● A process sends generated nodes to their owner processes

Init

Process0 Process1

Goal

H(s) = 1

Work
Queue

Process1

Hash Distributed A* (HDA*) Hash usage
state space

Work
Queue

Process0

(Kishimoto et al. 2009)

Static Load Balancing Approach (Hashing)

Init

Process0 Process1

Goal

H(s) = 1

Work
Queue

Process1

Hash usage
state space

Work
Queue

Process0

As HDA* relies on the hash function for load balancing,
the choice of hash function is significant to its performance!

Hash Distributed A* (HDA*)
(Kishimoto et al. 2009)

Hash Function for HDA*

● State (s) is given as a set of features xi:
state s = (x1, x2,...,xn)

● Given a state s, a hash function H(s) returns the
process which owns the state s

Init

Process0 Process1

Goal

Hash usage
state space

0
init

1

2 3

4 5 6
goal

process0 process1

BAD EXAMPLE

We want H(s) to be balanced
 → load balance (LB)

Properties of Hash Function

We want H(s) to be balanced
 → load balance (LB)

process0 process1

BAD EXAMPLE

0
init

1

2 3

4 5 6
goal

BAD EXAMPLE

process0 process1

0
init

1

2 3

4 5 6
goal

We want the value of H(s) to
not change frequently
→ communication overhead

 (CO)

Properties of Hash Function

● Strenght: good load balance
● Limitation: high communication overhead

process0 process1

process0 process1

Communication Cost

0
init

1

2 3

4 5 6
goal

0
init 1

2
3

4
5

6
goal

Zobrist Hashing (ZHDA*)
Zobrist (1970); Kishimoto et al. (2009)

state space graph

process0 process1

Communication Costprocess0 process1

State abstraction (AHDA*)
Burns et al. (2010)

● Strenght: low communication overhead
● Limitation: worse load balance

0
init

1

6
goal

state space graph

0
init

1

2 3

4 5 6
goal

・
・
・

Two Extremes

CO

LB

AHDA*
(State abstraction)

ZHDA*
(Zobrist hashing)

Both ZHDA* and AHDA* have a clear weakness and do not
scale well in large-scale cluster

Init

Goal

process0 process1

process0 process1

Communication Cost

Abstract Zobrist Hashing (AZHDA*)
Jinnai&Fukunaga (2016)

state space graph

● A hybrid of Abstraction and Zobrist hashing
● Can balance the trade-off of LB and CO by a parameter

Variants of HDA*
Jinnai&Fukunaga (2016)

CO

LB

OZHDA*

FAZHDA*

GAZHDA*

DAHDA*

● Bunch of variants… so which one is the best and why?

ZHDA*
(Zobrist hashing)

AHDA*
(State abstraction)

CO

LB

OZHDA*

FAZHDA*

GAZHDA*

DAHDA*

● Bunch of variants… so which one is the best and why?
● In this work we developed a model for HDA* so that we can

evaluate which method is likely to perform the best

Variants of HDA*
Jinnai&Fukunaga (2016)

AHDA*
(State abstraction)

ZHDA*
(Zobrist hashing)

Workload Graph
● A subset of state-space graph which

includes node n iff f(n) < f* or n is a goal node

f(n) < f* + goal node

Init

Goal

Model of Workloads

1. Expand a node owned by the process (t = tproc)

2. Send child nodes to their owners (t = tcom)

3. Terminates when all nodes are expanded and sent
 (to ensure optimality)

Proc 0

Proc 1

Init

Goal

CO :=
number of edges which require communication
total number of edges

LB :=
maximum number of nodes owned by a process
average number of nodes owned by a process

Proc 0

Proc 1

Init

Goal

Model of Overheads

Communication Overhead (CO):

Load Balance (LB):

Communication/Search Efficiency
● Communication Efficiency

– The degradation of walltime efficiency by communication
– Assume communication cost for every pair of processors are

identical

● Search Efficiency
– The degradation of walltime efficiency by load balance

(proceedings)

eff c :=
1

cCO c :=
tcom
t proc

where

eff s :=
1

1+ p(LB−1)
where p :=number of processes

Model Efficiency
● Model Efficiency

– Assume communication and search overheads are the dominant
 overhead

=
1

(1+cCO)(1+ p(LB−1))

eff esti :=eff c⋅eff s

Model of Parallel Search

From the partitioning of the workload graph, we can calculate the
model efficiency:

eff esti :=
1

(1+cCO)(1+ p(LB−1))

eff esti=
1

(1+1⋅4 /6)(1+2(3 /2.5−1))
=0.42

Proc 0

Proc 1

Init

Goal

(where c = 1)

Model vs. Actual Efficiency

● Calculated model efficiency by 5 HDA* variants
● 48 core machine
● 14 instances from IPC benchmarks
● M&S heuristic (Helmert et al. 2014)

c (=
tcom
t proc

)=1

Model in Practice

CO

LB

c (=
tcom
t proc

)=1.0

eff esti :=0.7

eff esti :=0.5

eff esti :=1.0

eff esti :=
1

(1+cCO)(1+ p(LB−1))

Model in Practice

CO

LB

c (=
tcom
t proc

)=1.0

eff esti :=0.7

eff esti :=0.5

eff esti :=1.0

eff esti :=
1

(1+cCO)(1+ p(LB−1))

ZHDA*
OZHDA*

FAZHDA*

GAZHDA*

DAHDA*

AHDA*

Use of the Model

● We cannot calculate LB and CO beforehand of the search

→ The model cannot be used to predict the performance
● So what it the takeaway from the model?

Work Distribution By DTG-Partitioning
(GRAZHDA*/sparsity)

● Domain Transition Graph (DTG) is an abstraction of the state-
space

● By partitioning each DTG we can approximate partitioning
the whole state-space graph.

(see the paper for detail)

Experimental Results

Kishimoto et al.
2013

Jinnai&Fukunaga
2017

Comparison of Model Efficiency

● GRAZHDA*/sparsity has the best model efficiency

eff esti :=
1

(1+cCO)(1+ p(LB−1))

Summary
● Developed a model to estimate the walltime efficiency of HDA*
● Code available at my github:

https://github.com/jinnaiyuu/Parallel-Best-First-Searches
https://github.com/jinnaiyuu/fast-downward (spaghetti right now)

● Journal version available at arXiv
Jinnai Y, Fukunaga A. 2017. On Hash-Based Work Distribution Methods
for Parallel Best-First Search

Open Questions
● Parallelizing other searches (e.g. width-based search)

https://github.com/jinnaiyuu/Parallel-Best-First-Searches
https://github.com/jinnaiyuu/fast-downward

Zobrist Hashing (ZHDA*)
Zobrist (1970); Kishimoto et al. (2009)

● Goal: Distribute nodes uniformly among processes

● Method: Initialize a table of random bit strings R; XOR
the hash value Ri[xi] for each feature

Z(s) = R1[x1] xor R2[x2] xor ... xor Rn[xn]

00100101

10001100

00000111

10101110
2

1

4 1 2
3 5 6
7 8

3

x1=2

x2=3

x3=4

State
s

Feature
xi

Feature
Hash
Ri[xi]

State
Hash
Z(s)

(xi represents the position of tile i)

Zobrist Hashing (ZHDA*)
Zobrist (1970); Kishimoto et al. (2009)

Z(s) = R1[x1] xor R2[x2] xor ... xor Rn[xn]

R1[2] =

R2[3] =

R3[4] =

● Strenght: good load balance
● Limitation: high communication overhead

process0 process1

process0 process1

Communication Cost

0
init

1

2 3

4 5 6
goal

0
init 1

2
3

4
5

6
goal

Zobrist Hashing (ZHDA*)
Zobrist (1970); Kishimoto et al. (2009)

state space graph

State abstraction (AHDA*)
Burns et al. (2010)

● Goal: Assign neighbor nodes to the same process

● Method: Project states into abstract states, and
abstract states are assigned to processors

10100001

3 1 6

4 5 2

7 8

3 1

2

A(s) = R[s']

State
s

Abstract
State
s'

State
Hash
R[s']

Example: s' only considers the position of tile 1,2, and 3:

process0 process1

Communication Costprocess0 process1

State abstraction (AHDA*)
Burns et al. (2010)

● Strenght: low communication overhead
● Limitation: worse load balance

0
init

1

6
goal

state space graph

0
init

1

2 3

4 5 6
goal

Abstract Zobrist Hashing (AZHDA*)
Jinnai&Fukunaga (2016)

Goal: Distributes nodes uniformly while assigning neighbor
nodes to the same process

Method: Apply feature abstraction Ai(xi) to project features
into abstract features and XOR the hash value of each abstract
feature
AZ(s) = R1[A1(x1)] xor R2[A2(x2)] xor ... xor Rn[An(xn)]

AZ(s) = Z(s'), where s' = (A1(x1), A2(x2),..., An(xn))

or

Abstract Zobrist Hashing (AZHDA*)
Jinnai&Fukunaga (2016)

AZ(s) = R1[A1(x1)] xor R2[A2(x2)] xor ... xor Rn[An(xn)]

01010001

01100010

00101100

00011111

2

1

4 1 2
3 5 6
7 8

State
s

Feature
xi

3

Abstract
Feature
Hash

Ri[Ai(xi)]

State
Hash
AZ(s)

1

2

3

Abstract
Feature
Ai(xi)

x1=2

x2=3

x3=4

A1(x1)=1

A2(x2)=1

A3(x3)=2

Greedy abstract feature generation
(Jinnai&Fukunaga 2016)

Approach: maps each SAS+ variable xi to abstract feature S1
and S2 based on xi's domain transition graphs (nodes are
values, edges are transitions)

1. Assign the minimal degree node to S1

2. Add to S1 the unassigned node which shares the most edges
with node in S1

3. Until |S1| reaches the half of the DTG, repeat step 2.

4. Assign all unassigned nodes to S2

S1

S2

GreedyAFG applied to DTG of 8-puzzle

A i(x i)=
1 (if x i∈S1)

2 (if x i∈S2)

xi=1

xi=4

xi=7

xi=2

xi=5

xi=8

xi=3

xi=6

xi=9

DTG of a variable xi
represents the
transition of the value

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

