A Graph Partitioning-Based Approach for Parallel Best-First Search

<u>Yuu Jinnai¹</u> Alex Fukunaga²

The University of Tokyo^{1,2} RIKEN Center for Advanced Intelligence Project¹

*This presentation is based on Section 5 of the journal paper (Jinnai&Fukunaga'17)

Why Parallel Algorithms?

Supercomputer (TOP 500)

https://www.top500.org/statistics/perfdevel/

Why Parallel A*?

- Larger aggregated memory (with distributed environment)
 - potentially able to solve instances which sequential A* cannot solve due to memory limitation
- Walltime speedup

Subtree Distribution

Subtree Distribution

Process 0

Process 1

Process 2

Dynamic Load Balancing Approach

Work Stealing Approach (Rao&Kumar'87)

Dynamic Load Balancing Approach

Work Stealing Approach (Rao&Kumar'87)

Process 0

Dynamic Load Balancing Approach

Work Stealing Approach (Rao&Kumar'87)

- Incurs duplicated nodes (for graph search)
- Incurs coordination overhead

Static Load Balancing Approach (Hashing)

- A global hash function assigns each state to a unique process
- A process sends generated nodes to their owner processes

Static Load Balancing Approach (Hashing)

As HDA* relies on the hash function for load balancing, **the choice of hash function is significant to its performance!**

Hash Function for HDA*

- State (s) is given as a set of features xi:
 state s = (x1, x2,...,xn)
- Given a state s, a hash function H(s) returns the process which owns the state s

Properties of Hash Function

We want H(s) to be balanced \rightarrow load balance (LB)

Properties of Hash Function

We want H(s) to be balanced \rightarrow load balance (LB)

We want the value of H(s) to not change frequently \rightarrow communication overhead (CO)

- Strenght: good load balance
- Limitation: high communication overhead

State abstraction (AHDA*) Burns et al. (2010)

- Strenght: low communication overhead
- Limitation: worse load balance

Two Extremes

Both ZHDA* and AHDA* have a clear weakness and do not scale well in large-scale cluster

Abstract Zobrist Hashing (AZHDA*) Jinnai&Fukunaga (2016)

- A hybrid of Abstraction and Zobrist hashing
- Can balance the trade-off of LB and CO by a parameter

Variants of HDA* Jinnai&Fukunaga (2016)

• Bunch of variants... so which one is the best and **why**?

Variants of HDA* Jinnai&Fukunaga (2016)

- Bunch of variants... so which one is the best and **why**?
- In this work we developed a model for HDA* so that we can evaluate which method is likely to perform the best

Workload Graph

 A subset of state-space graph which includes node *n* iff *f*(*n*) < *f** or *n* is a goal node

Model of Workloads

1. Expand a node owned by the process ($t = t_{proc}$)

2. Send child nodes to their owners $(t = t_{com})$

3. Terminates when all nodes are expanded and sent (to ensure optimality)

Model of Overheads

Communication Overhead (CO):

 $CO:=\frac{\text{number of edges which require communication}}{\text{total number of edges}}$

Load Balance (LB):

 $LB:=\frac{\text{maximum number of nodes owned by a process}}{\text{average number of nodes owned by a process}}$

Communication/Search Efficiency

- Communication Efficiency
 - The degradation of walltime efficiency by communication
 - Assume communication cost for every pair of processors are identical

$$eff_c := \frac{1}{c CO}$$
 where $c := \frac{t_{com}}{t_{proc}}$

- Search Efficiency
 - The degradation of walltime efficiency by load balance

(proceedings)

 $eff_s := \frac{1}{1 + p(LB - 1)}$ where p := number of processes

Model Efficiency

- Model Efficiency
 - Assume communication and search overheads are the dominant overhead

$$eff_{esti} := eff_c \cdot eff_s$$
$$= \frac{1}{(1 + cCO)(1 + p(LB - 1))}$$

Model of Parallel Search

From the partitioning of the workload graph, we can calculate the model efficiency:

$$eff_{esti} := \frac{1}{(1+cCO)(1+p(LB-1))}$$

= $\frac{1}{(1+1\cdot4/6)(1+2(3/2.5-1))} = 0.42$ (where c = 1)

Model vs. Actual Efficiency

- Calculated model efficiency by 5 HDA* variants
- 48 core machine
- 14 instances from IPC benchmarks
- M&S heuristic (Helmert et al. 2014)

Model in Practice

$$eff_{esti} := \frac{1}{(1+cCO)(1+p(LB-1))}$$

$$LB$$

$$eff_{esti} := 0.5$$

$$eff_{esti} := 0.7$$

$$eff_{esti} := 1.0$$

$$CO$$

Model in Practice

Use of the Model

- We cannot calculate LB and CO beforehand of the search
 - \rightarrow The model cannot be used to predict the performance
- So what it the takeaway from the model?

Work Distribution By DTG-Partitioning (GRAZHDA*/sparsity)

- Domain Transition Graph (DTG) is an abstraction of the statespace
- By partitioning each DTG we can approximate partitioning the whole state-space graph.

(see the paper for detail)

Experimental Results

Comparison of Model Efficiency

• GRAZHDA*/sparsity has the best model efficiency

$$eff_{esti} := \frac{1}{(1 + cCO)(1 + p(LB - 1))}$$

Summary

- Developed a model to estimate the walltime efficiency of HDA*
- Code available at my github:

https://github.com/jinnaiyuu/Parallel-Best-First-Searches https://github.com/jinnaiyuu/fast-downward (spaghetti right now)

 Journal version available at arXiv
 Jinnai Y, Fukunaga A. 2017. On Hash-Based Work Distribution Methods for Parallel Best-First Search

Open Questions

• Parallelizing other searches (e.g. width-based search)

- Goal: Distribute nodes uniformly among processes
- Method: Initialize a table of random bit strings R, XORthe hash value $R_i[x_i]$ for each feature

 $Z(s) = R_1[x_1] \operatorname{xor} R_2[x_2] \operatorname{xor} \ldots \operatorname{xor} R_n[x_n]$

 $Z(s) = R_1[x_1] \operatorname{xor} R_2[x_2] \operatorname{xor} \ldots \operatorname{xor} R_n[x_n]$

(x_i represents the position of tile i)

- Strenght: good load balance
- Limitation: high communication overhead

State abstraction (AHDA*) Burns et al. (2010)

- Goal: Assign neighbor nodes to the same process
- Method: Project states into abstract states, and abstract states are assigned to processors

A(s) = R[s']

Example: s' only considers the position of tile 1,2, and 3:

State abstraction (AHDA*) Burns et al. (2010)

- Strenght: low communication overhead
- Limitation: worse load balance

Abstract Zobrist Hashing (AZHDA*) Jinnai&Fukunaga (2016)

<u>Goal</u>: Distributes nodes uniformly while assigning neighbor nodes to the same process

<u>Method</u>: Apply **feature abstraction** $A_i(x_i)$ to project features into abstract features and *XOR* the hash value of each abstract feature $AZ(s) = R_1[A_1(x_1)] \text{ xor } R_2[A_2(x_2)] \text{ xor } \dots \text{ xor } R_n[A_n(x_n)]$

 $AZ(s) = R_1[A_1(x_1)] \text{ XOr } R_2[A_2(x_2)] \text{ XOr } \dots \text{ XOr } R_n[A_n(x_n)]$ or

$$AZ(s) = Z(s')$$
, where $s' = (A_1(x_1), A_2(x_2), ..., A_n(x_n))$

Abstract Zobrist Hashing (AZHDA*)

Jinnai&Fukunaga (2016)

 $AZ(s) = R_1[A_1(x_1)] \text{ xor } R_2[A_2(x_2)] \text{ xor } \dots \text{ xor } R_n[A_n(x_n)]$

Greedy abstract feature generation (Jinnai&Fukunaga 2016)

Approach: maps each SAS+ variable xi to abstract feature S_1 and S_2 based on xi's domain transition graphs (nodes are values, edges are transitions)

- 1. Assign the minimal degree node to S_1
- 2. Add to S_1 the unassigned node which shares the most edges with node in S_1
- 3. Until $|S_1|$ reaches the half of the DTG, repeat step 2.
- 4. Assign all unassigned nodes to S_2

DTG of a variable xi represents the S_2 transition of the value

GreedyAFG applied to DTG of 8-puzzle