
On Hash-Based Work Distribution Methods for

Parallel Best-First Search

Yuu Jinnai

Thesis Advisor: Alex Fukunaga

Graduate School of Arts and Sciences

The University of Tokyo

Tokyo, Japan

Abstract

Parallel best-first search algorithms such as Hash Distributed A* (HDA*) distribute

work among the processes using a global hash function. We analyze the search and

communication overheads of state-of-the-art hash-based parallel best-first search algo-

rithms, and show that although Zobrist hashing, the standard hash function used by HDA*,

achieves good load balance for many domains, it incurs significant communication over-

head since almost all generated nodes are transferred to a different processor than their

parents. We propose Abstract Zobrist hashing, a new work distribution method for parallel

search which, instead of computing a hash value based on the raw features of a state, uses a

feature projection function to generate a set of abstract features which results in a higher lo-

cality, resulting in reduced communications overhead. We show that Abstract Zobrist hash-

ing outperforms previous methods on search domains using hand-coded, domain specific

feature projection functions. We then propose GRAZHDA*, a graph-partitioning based

approach to automatically generating feature projection functions. GRAZHDA* seeks to

approximate the partitioning of the actual search space graph by partitioning the domain

transition graph, an abstraction of the state space graph. We show that GRAZHDA* out-

performs previous methods on domain-independent planning.

1

Acknowledgements

I would like to express my sincere gratitude to my advisor Dr. Alex Fukunaga for the con-

tinuous support of my M.S. and related research, for his patience, motivation, and knowl-

edge. He has been supportive since I began working on computer science as an undergrad-

uate. Despite I was from a different field and know almost nothing about computer science,

he patiently guided me of my study and research.

Besides my advisor, I am grateful to my fellow labmates for stimulating my scientific

curiosity in areas which I was otherwise unaware of. In particular, I would like to thank

Asai Masataro, Satoru Horie, Yasutaka Tanaka, and Shunji Lin.

Last I would like to thank my family for supporting my decision to go to Graduate

school and my life in general, despite all the difficulties.

2

Contents

1 Introduction 15

2 Preliminaries and Background 19

1 A* search . 19

2 Classical Planning . 20

3 Parallel Overheads . 21

4 Parallel Best-First Search Algorithms . 22

5 Hash Distributed A* (HDA*) . 26

6 Zobrist Hashing (HDA∗[Z]) and Operator-Based Zobrist Hashing (HDA∗[Zoperator]) 27

7 Abstraction (HDA∗[P ,Astate]) . 28

8 Classification of HDA* variants and a Uniform Notation for HDA* variants

(HDA∗[hash, abstraction]) . 29

3 Analysis of Parallel Overheads in Multicore Best-First Search 33

1 Search Overhead and the Order of Node Expansion on Combinatorial Search 34

1.1 Band Effect . 39

1.2 Burst Effect . 40

1.3 Node Reexpansions . 42

1.4 The Impact of Work Distribution Method on the Order of Node

Expansion . 43

3

2 Revisiting HDA* (HDA∗[Z], HDA∗[P ,Astate], HDA∗[Z ,Astate], HDA∗[P])

vs. SafePBNF for Admissible Search . 45

2.1 On the effect of hashing strategy in AHDA* (HDA∗[Z ,Astate] vs.

HDA∗[P ,Astate]) . 49

3 The Effect of Communication Overhead on Speedup 50

4 Summary of the Parallel Overheads for HDA∗[Z] and HDA∗[P ,Astate] . . . 52

4 Abstract Zobrist Hashing(AZH) 53

1 Evaluation of Work Distribution Methods on Domain-Specific Solvers . . . 56

1.1 15-Puzzle . 57

1.2 24-Puzzle . 60

1.3 Multiple Sequence Alignment . 61

1.4 Node Expansion Order of HDA∗[Z ,Afeature] 62

2 Automated, Domain Independent Abstract Feature Generation 63

2.1 Greedy Abstract Feature Generation (GAZHDA*) 65

2.2 Fluency-Dependent Abstract Feature Generation (FAZHDA*) . . . 66

5 A Graph Partitioning-Based Model for Work Distribution 69

1 Work Distribution as Graph Partitioning 70

2 Parallel Efficiency and Graph Partitioning 72

2.1 Experiment: effesti model vs. actual efficiency 73

6 Graph Partitioning-Based Abstract Feature Generation (GRAZHDA*) 77

1 Previous Methods and Their Relationship to GRAZHDA* 80

2 Effective Objective Functions for GRAZHDA* 83

2.1 Sparsest Cut Objective Function (GRAZHDA*/sparsity) 84

2.2 Experiment: Validating the Relationship between Sparsity and effesti 85

2.3 Partitioning the DTGs . 86

3 Evaluation of Automated, Domain-Independent Work Distribution Methods 87

3.1 The effect of the number of cores on speedup 90

4

3.2 Cloud Environment Results . 91

3.3 24-Puzzle Experiments . 91

3.4 Evaluation of Parallel Search Overheads and Performance in Low

Communications-Cost Environments 94

7 Conclusions 97

Bibliography 107

5

List of Figures

2-1 Classification of parallel best-first searches. 23

3-1 Illustration of Band Effect: Comparison node expansion order on an easy

instance of the 15-Puzzle. The vertical axis represents the order in which

state s is expanded by parallel search, and the horizontal axis represents

the order in which s is expanded by A*. The line y = x corresponds to an

ideal, strict A* ordering in which the parallel expansion order is identical to

the A* expansion order. The cross marks (“Goal”) represents the (optimal)

solution, and the vertical line from the goal shows the total number of node

expansions by A*. Thus, all nodes above this line result in SO. 35

3-2 Comparison of parallel vs sequential node expansion order on an easy in-

stance of the 15-Puzzle with 8 threads. 36

3-3 Comparison of node expansion order on a difficult instance of the 15-

Puzzle with 8 threads. The average node expansion order divergence of

scores are HDA∗[Z]: d̄ = 10, 330.6, HDA∗[Z] (slowed): d̄ = 8, 812.1,

HDA∗[P ,Astate]: d̄ = 245, 818, HDA∗[P]: d̄ = 4, 469, 340, SafePBNF:

d̄ = 140, 629.4. 37

3-4 Comparison of the number of instances solved within given walltime. The

x axis shows the walltime and y axis shows the number of instances solved

by the given walltime. In general, HDA∗[Z] outperforms SafePBNF on

difficult instances (> 10 seconds) and SafePBNF outperforms HDA∗[Z] on

easy instances (< 10 seconds). 47

7

3-5 Comparison of the number of instances solved within given number of node

expansions. The x axis shows the walltime and y axis shows the num-

ber of instances solved by the given node expansion. Overall, HDA∗[Z]

has the lowest SO except in grid pathfinding, where HDA∗[Z] suffers from

high node duplication because the node expansion is extremely fast in grid

pathfinding. HDA∗[Z ,Astate] and HDA∗[P ,Astate] expanded almost identi-

cal number of nodes in 24-puzzle. 48

4-1 Calculation of Abstract Zobrist Hash (AZH) value AZ(s) for the 8-puzzle: State

s = (x1, x2, ..., x8), where xi = 1, 2, ..., 9 (xi = j means tile i is placed at posi-

tion j). The Zobrist hash value of s is the result of xor’ing a preinitialized random

bit vector R[xi] for each feature (tile) xi. AZH incorporates an additional step

which projects features to abstract features (for each feature xi, look up R[A(xi)]

instead of R[xi]). 55

4-2 The hand-crafted abstract features used by AZH for 15 and 24-puzzle. . . . 57

4-3 Load balance (LB) and search overhead (SO) on 100 instances of the 15-

Puzzle for 4/8/16 threads. “A” = HDA∗[Z ,Afeature], “Z” = HDA∗[Z], “b” =

HDA∗[P ,Astate], “P” = HDA∗[P], e.g., “Z8” is the LB and SO for Zobrist

hashing on 8 threads. 2-D error bars show standard error of the mean for

both SO and LB. 58

4-4 Efficiency (= speedup
#cores

), Communication Overhead (CO), and Search Over-

head (SO) for 15-puzzle (100 instances), 24-puzzle (100 instances), and

MSA (60 instances) on 4/8/16 threads. The open list is implemented using

a 2-level bucket for sliding-tiles, and as a binary heap for MSA. In the CO

vs SO plot, “A” = HDA∗[Z ,Afeature] (AZHDA*), “Z” = HDA∗[Z] (ZHDA*),

“b” = HDA∗[P ,Astate] (AHDA*), “P” = HDA∗[P], “H” = HDA∗[Hyperplane],

e.g., “Z8” is the CO and SO for Zobrist hashing on 8 threads. Error bars

show standard error of the mean. 59

8

4-5 Comparison of HDA∗[Z ,Afeature] node expansion order vs. sequential A*

node expansion order on a difficult instance of the 15-puzzle with 8 threads.

The average node expansion order divergence scores for difficult instances

are HDA∗[Z]: d̄ = 10330.6, HDA∗[P ,Astate]: d̄ = 245818, HDA∗[Z ,Afeature]:

d̄ = 76932.2. AZHDA has a bigger band effect than HDA∗[Z], but smaller

than HDA∗[P ,Astate]. Although the band of HDA∗[Z ,Afeature] appears to

be as large as HDA∗[P ,Astate], the actual divergence score d̄ is higher on

HDA∗[P ,Astate] as HDA∗[P ,Astate] expands more nodes. 63

4-6 Greedy abstract feature generation (GreedyAFG) and Fluency-dependent

abstract feature generation (FluencyAFG) applied to blocksworld domain.

The hash value for a state s = (x0, x1, x2) is given by AZ(s) = R[A(x0)] xor R[A(x1)] xor R[A(x2)].

Grey squares are abstract features A generated by GreedyAFG, so all propo-

sitions in the same square have same hash value (e.g. R[A(holding(a))] =

R[A(ontable(a))]). fluency(x0) = 1 since all actions in the blocks world

domain change its value. In this case, any abstract features based on the

other variables are rendered useless, as all actions change x0 and thus

change the state’s hash value. In this example, Fluency-dependent AFG

will filter x0 before calling GreedyAFG to compute abstract features based

on the remaining variables (thus AZ(s) = R[A(x1)] xor R[A(x2)]). 67

5-1 Comparison of effesti and the actual experimental efficiency when commu-

nication cost c = 1.0 and the number of processes p = 48. The figure ag-

gregates the data points of FAZHDA*, GAZHDA*, OZHDA*, DAHDA*,

and ZHDA* shown in Figure 6.1. effactual = 0.86 · effesti with variance of

residuals = 0.013 (least-squares regression). 75

9

6-1 GRAZHDA* applied to 8 puzzle domain. The SAS+ variable v1 and v2

correspond to the position of tile 1 and 2. The domain transition graphs

(DTGs) of v1 and v2 are shown in the top of the figure (e.g. v1 = {(at t1

x1 y1), (at t1 x1 y2), (at t1 x1 y3),...}). GRAZHDA*

partitions each DTG with given objective function to generate abstract

feature S1 and S2, and A(v1) = S1, S2. Thus, the hash value of ab-

stract feature R[A(v1)] corresponds to which partition v1 belongs to. As

DTGs are compressed representation of the state space graph, partition-

ing a DTG corresponds to partitioning a state space graph. By xor’ing

R[A(v1)], R[A(v2)], ..., the hash value AZ(s) represents for each variable

vi which partition it belongs to. 79

6-2 Work distribution methods described as an instances of GRAZHDA* with

clustering. Previous methods can be seen as GRAZHDA* + clustering with

suboptimal objective function. The arrows represent the relationship of

methods. For example, FAZHDA* applies fluency-based filtering to ignore

some variables, and then applies GreedyAFG to partition DTGs. This can

be described as applying clustering, partitioning, and then Zobrist hashing.

As such, all previous methods discussed in this thesis can be explained as

instances of GRAZHDA* (with clustering). 80

6-3 GRAZHDA*/sparsity and Greedy abstract feature generation (GreedyAFG)

applied to DTG on logistics domain of 2 cities with 10/6 locations. Each

node in the domain transition graph above corresponds to a location of

the package (at obj12 ?loc). GreedyAFG potentially cuts many edges be-

cause it requires the best load balance possible for the cut (bisection), while

GRAZHDA*/sparsity takes into account of the number of edge cut as an

objective function. 85

10

6-4 Figure 6-4a compares effesti when communication cost c = 1.0, the number

of processes p = 48. Bold indicates that GRAZHDA*/sparsity has the

best effesti (except for IdealApprox). Figure 6-4b compares sparsity vs.

effesti . For each instance, we generated 3 different partitions using METIS

with load balancing constraints which force METIS to balance randomly

selected nodes, to see how degraded sparsity affects effesti . There was no

partition with effesti < 0.84. 86

6-5 Speedup of HDA* variants (average over all instances in Table 6.2. Results

are for 1 node (8 cores), 2 nodes (16 cores), 4 nodes (32 cores) and 6 nodes

(48 cores). 91

6-6 Abstract features generated by GRAZHDA*/sparsity (HDA∗[Z ,Afeature/DTGsparsity])

for 15-puzzle and 24-puzzle. Abstract features generated on 15-puzzle ex-

actly corresponds to the hand-crafted hash function of Figure 4-2b. 94

11

List of Tables

2.1 Overview of all HDA* variants mentioned in this thesis 31

3.1 Comparison of the average divergence (d̄) and premature expansions (p̄)

for the 50 most difficult 15-puzzle instances. 44

3.2 Comparison of speedup, communication overhead, and search overhead of

HDA∗[P ,Astate] on grid path finding using different abstraction size. CO:

communication overhead (= # nodes sent to other threads
nodes generated), SO: search overhead (=

nodes expanded in parallel
#nodes expanded in sequential search − 1). 51

3.3 Comparison of speedup, communication overhead, and search overhead of

HDA∗[Z] and HDA∗[P ,Astate] on 15-puzzle, 24-puzzle, and grid pathfind-

ing with 8 threads. CO: communication overhead, SO: search overhead.

HDA∗[Z] outperformed HDA∗[P ,Astate] in 15-puzzle and 24-puzzle while

HDA∗[P ,Astate] outperformed HDA∗[Z] in grid pathfinding. 52

4.1 Comparison of previous automated domain-independent feature gen-

eration methods for HDA*. CO: communication overhead, SO: search

overhead, “optimized”: the method explicitly optimizes the overhead (ap-

proximately). “ad hoc”: the method seeks to mitigate the overhead but

without an explicit objective function. “not addressed”: the method does

not address the overhead. 64

13

6.1 Comparison of effactual and effesti on a commodity cluster with 6 nodes,

48 processes. effesti (effactual) with bold font indicates the method has the

best effesti (effactual). Instance name with bold indicates that the best effesti

method has the best effactual . Speedup, CO, SO on experimental run are

shown in Table 6.2. 88

6.2 Comparison of average speedups, communication/search overhead (CO,

SO) on 10 runs on a commodity cluster with 6 nodes, 48 processes using

merge&shrink heuristic. The results with standard deviation are shown in

appendix. 89

6.3 Comparison of walltime, communication/search overhead (CO, SO) on a

cloud cluster (EC2) with 128 virtual cores (32 m1.xlarge EC2 instances)

using the merge&shrink heuristic. We run sequential A* on a different ma-

chine with 128 GB memory because some of the instances cannot be solved

by A* on a single m1.xlarge instance due to memory limits. Therefore we

report walltime instead of speedup. 92

6.4 Comparison of speedups, communication/search overheads (CO, SO) us-

ing expensive heuristic (LM-cut). 93

1 Performance of AHDA* with fixed threshold (on 48 cores). Note that

|G| > |G′| does not indicate that all atom groups used in G are used in

G′. DAHDA* limits the size of abstract graph according to the number of

features in abstract graph, whereas AHDA* set maximum to Nmax. Due

to this difference, DAHDA* tends to end up with a different set of atom

groups than AHDA*. 103

2 Table 9: Comparison of speedups, communication/search overhead (CO,

SO) and their standard deviations on a commodity cluster with 6 nodes, 48

processes using merge&shrink heuristic (Extension of Table 6.2). 104

3 Cont. Table 9. 105

14

Chapter 1

Introduction

The A* algorithm (Hart, Nilsson, & Raphael, 1968b) is used in many areas of AI, includ-

ing planning, scheduling, path-finding, and sequence alignment. Parallelization of A* can

yield speedups as well as a way to overcome memory limitations – the aggregate mem-

ory available in a cluster can allow problems that can’t be solved using a single machine

to be solved. Thus, designing scalable, parallel search algorithms is an important goal.

The major issues which need to be addressed when designing parallel search algorithms

are search overhead (states which are unnecessarily generated by parallel search but not

by sequential search), communications overhead (overheads associated with moving work

among threads), and coordination overhead (synchronization overhead).

Hash Distributed A* (HDA*) is a parallel best-first search algorithm in which each

processor executes A* using local OPEN/CLOSED lists, and generated nodes are assigned

(sent) to processors according to a global hash function (Kishimoto, Fukunaga, & Botea,

2013). HDA* can be used in distributed memory systems as well as multi-core, shared

memory machines, and has been shown to scale up to hundreds of cores with little search

overhead.

The performance of HDA* depends on the hash function used for assigning nodes to

processors. Kishimoto et al (2009, 2013) showed that using the Zobrist hash function

(1970), HDA* could achieve good load balance and low search overhead. Burns et al

15

(2010) noted that Zobrist hashing incurs a heavy communication overhead because many

nodes are assigned to processes that are different from their parents, and proposed AHDA*,

which used an abstraction-based hash function originally designed for use with PSDD

(Zhou & Hansen, 2007) and PBNF (Burns et al., 2010). Abstraction-based work distri-

bution achieves low communication overhead, but at the cost of high search overhead.

In this thesis, we investigate node distribution methods for HDA*. We start by re-

viewing previous approaches to work distribution in parallel best-first search, including the

HDA* framework (Section 2). Then, in Section 3, we present an in-depth investigation of

parallel overheads in state-of-the-art parallel best-first search methods. We begin by inves-

tigating why search overhead occurs on parallel best-first search by analyzing how node

expansion order in HDA* diverges from that of A*. If the expansion order of a parallel

search algorithm is strictly the same as A*, there is no search overhead, so divergence in

expansion order is a useful indicator for understanding search overhead. We show that al-

though HDA* incurs some search overhead due to load imbalance and startup overhead,

HDA* using the Zobrist Hash function incurs significantly less search overhead than other

methods. However, while HDA* with Zobrist hashing successfully achieves low search

overhead, we show that communication overhead is actually as important as search over-

head in determining the overall efficiency for parallel search, and Zobrist hashing results in

very high communications overhead, resulting in poor performance on the grid pathfinding

problem.

Next, in Section 4, we propose Abstract Zobrist hashing (AZH), which achieves both

low search overhead and communication overhead by incorporating the strengths of both

Zobrist hashing and abstraction. While the Zobrist hash value of a state is computed by

applying an incremental hash function to the set of features of a state, AZH first applies

a feature projection function mapping features to abstract features, and the Zobrist hash

value of the abstract features (instead of the raw features) is computed. We show that on

the 24-puzzle, 15-puzzle, and multiple sequence problem, AZH with hand-crafted, domain-

16

specific feature projection function significantly outperform previous methods on a multi-

core machine with up to 16 cores.

Then, we discuss a domain-independent method to automatically generate an efficient

feature projection function for abstract Zobrist hashing framework. We first show that a

work distribution can be modeled as graph partitioning (Section 5). However, standard

graph partitioning techniques for workload distribution in scientific computation are in-

applicable to heuristic search because the state space is only defined implicitly. Then, in

Section 6, we propose GRAZHDA*, a new domain-independent method for automatically

generating a work distribution function, which, instead of partitioning the actual state space

graph (which is impractical), generates an approximation by partitioning a domain transi-

tion graph. We then discuss what objective function to optimize in GRAZHDA* to achieve

a good performance and propose sparsity as an objective function. We experimentally show

that GRAZHDA* optimizing sparsity objective function outperforms all previous variants

of HDA* on domain-independent planning, using experiments run on a 48-core cluster as

well as a cloud-based cluster with 128 cores. We conclude the thesis with a summary of

our results and directions for future work (Section 7).

Portions of this work has been previously presented in two conference papers (Jinnai &

Fukunaga, 2016a, 2016b), corresponding to Section 4, as well as parts of Section 2, and in

a journal paper (Jinnai & Fukunaga, 2017b), corresponding to Section 4-6.

17

Chapter 2

Preliminaries and Background

In this section, we first review A* search and classic planning problem, and define the three

major classes of overheads that pose a challenge for parallel search (Section 3). We then

survey parallel best-first search algorithms (Section 4) and review the HDA* framework

(Section 5). We then review the two previous approaches which have been proposed for

the HDA* framework, Zobrist hashing (Section 6) and abstraction (Section 7).

2.1 A* search

Most of the parallel search algorithms presented in this thesis are based on A* search algo-

rithm (Hart, Nilsson, & Raphael, 1968a). Given a weighted directed Graph G = (V,E,w),

an initial node s0, goal nodes T ⊂ V , A* returns a path from the initial node s0 to one

of the goal nodes T . A* keeps two sets of nodes, the OPEN list and the CLOSED list.

The OPEN contains the set of nodes that have been generated and yet to be expanded. The

CLOSED is the set of expanded nodes. A* selects a node to expand from the OPEN with

the smallest f -value, an estimation of the cost of a shortest solution path including node n.

The f -value of node n is defined as f(n) = g(n) + h(n). The path cost g(n) is the cost

of the best known path from the initial node s0 to the node n. The heuristic value h(n) is

an estimation of the cost from n to a goal node. A heuristic function h is an admissible

19

heuristic if it is a lower bound for the optimal solution costs; that is, h(s) ≤ C ∗ (n) for all

n ∈ V . For admissible heursitic h, A* returns the minimal cost path.

Algorithm 1: A*
1 Initialize OPEN to {s0}, CLOSED to {∅};
2 f(s0)← h(s);
3 while OPEN ̸= ∅ do
4 Remove u from OPEN with minimum f(u);
5 Insert u in CLOSED;
6 if Goal(u) then
7 Return Path(u);
8 else
9 Succ(u)← Expand(u);

10 for each v ∈ Succ(u) do
11 if v ∈ OPEN then
12 if g(u) + w(u, v) < g(v) then
13 parent(v)← u;
14 f(v)← g(u) + w(u, v) + h(v);
15 else if v ∈ CLOSED then
16 if g(u) + w(u, v) < g(v) then
17 parent(v)← u;
18 f(v)← g(u) + w(u, v) + h(v);
19 Remove v from CLOSED;
20 Insert v into OPEN with f(v);
21 else
22 parent(v)← u;
23 Initialize f(v)← g(u) + w(u, v) + h(v);
24 Insert v into OPEN with f(v);
25 Return ∅ (failure, no path exist);

2.2 Classical Planning

Classical planning is a framework in which many application problems are modelled, in-

cluding logistics (Helmert & Lasinger, 2010; Sousa & Tavares, 2013), cell assembly (Asai

& Fukunaga, 2014), genome rearrangement (Erdem & Tillier, 2005), and arcade games

(Lipovetzky, Ramirez, & Geffner, 2015; Jinnai & Fukunaga, 2017a). A world in classical

planning is described in logic (Fikes & Nilsson, 1971). Atomic propositions AP describe

20

what can be true of false in each state of the world. By applying operations to a state, the

state transition to another state where different atomic propositions might be true or false.

The goal of a classical planning problem is to find a sequence of operations which leads to

goal condition from the initial state. We follow the definition by (Edelkamp & Schroedl,

2010):

Definition 1 A classical planning problem is a finite-state space problem P = (S,A, s0, T)

where S ⊆ 2AP is the set of states, s0 ∈ S is the initial state, T ⊆ S is the set of goal states,

and A is the set of actions (operations) that transform states into states.

Specifically, in STRIPS formalization, a goal is described as a list of propositions

Goal ⊆ AP . T is a set of states which all propositions in Goal are true. Actions a ∈ A

have propositional preconditions pre(a), and propositional effects (add(a), del(a)), where

pre(a) ⊆ AP is the precondition of a, add(a) ⊆ AP is the add list, del(a) ⊆ AP is the

delete list. Given a state s with pre(a) ⊆ s, then its successor s′ = succ(s, a) is defined

as s′ = (s del(a)) ∪ add(a). As such, a classical planning problem can be solved by an

A* search (G(V ′, E ′, w′), s′0, T
′); V ′ = S, e(vi, vj) ∈ E ′ exists if there exists a such that

vj = succ(vi, a), s′0 = s0, T ′ = T . We discuss classical planning in detail in Section 2.

2.3 Parallel Overheads

Although an ideal parallel best-first search algorithm would achieve an n-fold speedup on

n threads, several overheads can prevent parallel search from achieving linear speedup.

Communication Overhead (CO): 1 Communication overhead refers to the cost of ex-

changing information between threads. In this thesis we define communication overhead

as the ratio of nodes transferred to other threads: CO := # nodes sent to other threads
nodes generated . CO is

detrimental to performance because of delays due to message transfers (e.g., network com-

munications), as well as access to data structures such as message queues. In general, CO

1. In this thesis, CO stands for communication overhead, not coordination overhead.

21

increases with the number of threads. If nodes are assigned randomly to the threads, CO

will be proportional to 1− 1
#thread

.

Search Overhead (SO): Parallel search usually expands more nodes than sequential A*.

In this thesis we define search overhead as SO := # nodes expanded in parallel
#nodes expanded in sequential search − 1. SO

can arise due to inefficient load balance (LB), where we define load balance as LB :=

Maximum number of nodes assigned to a thread
Average number of nodes assigned to a thread . If load balance is poor, a thread which is assigned more

nodes than others will become a bottleneck – other threads spend their time expanding

less promising nodes, resulting in search overhead. Search overhead is not only critical

to the walltime performance, but also to the space efficiency. Even in distributed memory

environment, RAM per core is still an important issue to consider.

Coordination (Synchronization) Overhead: In parallel search, coordination overhead

occurs when a thread has to wait in idle for an operation of other threads. Even when a par-

allel search itself does not require synchronization, coordination overhead can be incurred

due to contention for the memory bus (Burns et al., 2010; Kishimoto et al., 2013).

There is a fundamental trade-off between CO and SO. Increasing communication can

reduce search overhead at the cost of communication overhead, and vice-versa.

2.4 Parallel Best-First Search Algorithms

The key to achieving a good speedup in parallel best-first search is to minimize communi-

cation, search, and coordination overhead. In this section, we survey previous approaches.

Figure 2-1 presents a visual classification of these approaches which summarizes the dis-

cussion below.

Parallel A* (PA*) (Irani & Shih, 1986) is a straightforward parallelization of A* which

uses a single, shared open list (in this thesis, we refer to this algorithm as “PA*”, and use

“parallel A*” to refer to the family of parallel algorithms based on A*). Since worker

processes always expand the best node from the shared open list, this minimizes search

overhead by eliminating the burst effects. However, node reexpansions are possible in PA*

because (as with most other parallel A* variants including HDA*) PA* does not guarantee

22

 centralized
 approach

PA*, PA*SE
Irani&Shih, 1986

Phillips et al., 2014

requires sync. on
every node

expansion and
generation

decentralized
approach

hash-based work
distrbution

Randomized
strategy

Kumar et al. 1988

high node
duplication

 randomized

 structured
 abstraction

(Safe)PBNF
Burns et al., 2010

open list
management

communication

work
distribution

PRA*
Evett et al., 1995

requires sync. on
every node sending

　　　　　　　　　 synchronousasynchronous

ZHDA*
(HDA*[Z])

Kishimoto et al.,
2009; 2013
(Sec. 2.4)

high communication
overhead

feature
generation

method

feature

AHDA*
(HDA*[P,Astate],

HDA*[P,Astate/SDD])

Burns et al., 2010
(Sec. 2.5)

high search
overhead

abstraction abstract feature

AZHDA*
(HDA*[Z,Afeature])

This paper
(Sec. 4)

HDA*[Hyperplane]
Kobayashi et al.,

2011
(Sec. 4.1.3)

domain dependent

 hyperplane

HDA*
Kishimoto et al., 2009; 2013 (Sec. 2.3)

HDA*[P]
Burns et al., 2010

(Sec. 3.1.4)

high search and
communication

overhead

 feature

Figure 2-1: Classification of parallel best-first searches.

that a state has an optimal g-value when expanded. Phillips, Likhachev, and Koenig have

proposed PA*SE, a mechanism for reducing node reexpansions in PA* (2014) which only

expands nodes when their g-values are optimal, ensuring that nodes are not reexpanded.

Kumar, Ramesh, and Rao (1988) identified two classes of approaches to open list man-

agement in parallel A*. PA* and its variants are instances of a centralized approach which

shares a single open list among all processes. However, concurrent access to the shared

open list becomes a bottleneck and inherently limits the scalability of this approach unless

the cost of expanding each node is extremely expensive, even if lock-free data structures are

used (Burns et al., 2010). A decentralized approach addresses this bottleneck by assigning

each process to a separate open list. Each process executes a best-first search using its own

23

local open list. While decentralized approaches eliminate coordination overhead incurred

by a shared open list, load balancing becomes a problem.

There are several approaches to load balancing in decentralized best-first search. The

simplest approach is a randomized strategy which sends generated states to a randomly

selected neighbor processes (Kumar et al., 1988). The problem with this strategy is that

duplicate nodes are not detected unless they are fortuitously sent to the same process, which

can result in a tremendous amount of search overhead due to nodes which are redundantly

expanded by multiple processors.

Parallel Retracting A* (PRA*) (Evett, Hendler, Mahanti, & Nau, 1995) uses a hash-

based work distribution to address simultaneously address both load balancing and dupli-

cate detection. In PRA*, each process owns its local open and closed list. A global hash

function maps each state to exactly one process which owns the state. Thus, hash-based

work distribution solves the problem of duplicate detection and elimination, because each

state has exactly one owner. When generating a state, PRA* distributes it to the correspond-

ing owner synchronously. However, synchronous node sending was shown to degrade per-

formance on domains with fast node expansion, such as grid pathfinding and sliding-tile

puzzle (Burns et al., 2010).

Transposition-Table Driven Work Scheduling (TDS) (Romein, Plaat, Bal, & Schaeffer,

1999) is a distributed memory, parallel IDA* with hash-based work distribution. In contrast

to PRA*, TDS sends a state to its owner process asynchronously.

An alternate approach for load balancing, which originated in a line work for using

multiple processes in external memory search (Korf & Schultze, 2005; ?, ?), is based on

structured abstraction. Given a state space graph and a projection function, an abstract

state graph is (implicitly) generated by projecting states from the original state space graph

into abstract nodes. For example, an abstract space for the sliding tile puzzle domain can

be created by projecting all nodes with the blank tile at position b to the same abstract state.

While the use of abstractions as the basis for heuristic functions has a long history (Pearl,

1984), the use of abstractions as a mechanism for partitioning search states originated in

24

Structured Duplicate Detection (SDD), an external memory search which stores explored

states on disk (Zhou & Hansen, 2004). In SDD, an n-block is defined as the set of all nodes

which map to the same abstract node. SDD uses n-blocks to provide a solution to duplicate

detection. For any node n which belongs to n-block B, the duplicate detection scope of n

is defined as the set of n-blocks which can possibly contain duplicates of n, and duplicate

checks can be restricted to the duplication detection scope, thereby avoiding the need to

look for a duplicate of n outside this scope. SDD exploits this property for external memory

search by expanding nodes within a single n-block B at a time and keeping the duplicate

detection scope of the nodes in B in RAM, avoiding costly I/O. Unlike stack-slicing, which

requires leveled search space, SDD is applicable to any state-space search problem. Parallel

Structured Duplicate Detection (PSDD) is a parallel search algorithm which exploits n-

blocks to address both synchronization overhead and communication overhead (Zhou &

Hansen, 2007). Each processor is exclusively assigned to an n-block and its neighboring

n-blocks (which are the duplication detection scopes). By exclusively assigning n-blocks

with disjoint duplicate detection scopes to each processor, synchronization during duplicate

detection is eliminated. While PSDD used disjoint duplicate detection scopes to parallelize

breadth-first heuristic search (Zhou & Hansen, 2006a), Parallel Best-NBlocks First (PBNF)

(Burns et al., 2010) extends PSDD to best-first search on multicore machine by ensuring

that n-blocks with the best current f -values are assigned to processors. Since livelock is

possible in PBNF on domains with infinite state spaces, Burns et al proposed SafePBNF, a

livelock-free version of PBNF (2010). Burns et al (2010) also proposed AHDA*, a variant

of HDA* which uses an abstraction-based node distribution function. AHDA* is described

below in Section 7.

Efficient abstractions can also be generated by exploiting prior knowledge of the struc-

ture of the state-space and/or machines on which search is performed. Stack-slicing projects

states to their path costs to achieve efficient communication in depth-first search (?), and is

useful in domains with levelled graphs, where each state can be reached only by a unique

path cost, such as model checking (Holzmann & Boŝnaĉki, 2007) (thus enabling dupicate

25

detection). LOcal HAshing of nodes (LOHA) applies path cost-based partitioning in A*

search to reduce the number of inter-node communication in a hypercube multiprocessor

(Mahapatra & Dutt, 1997).

2.5 Hash Distributed A* (HDA*)

Hash Distributed A* (HDA*) (Kishimoto et al., 2013) is a parallel A* algorithm which

incorporates the idea of hash-based work distribution from PRA* (Evett et al., 1995) and

asynchronous communication from TDS (Romein et al., 1999). In HDA*, each processor

has its own open/closed lists. A global hash function assigns a unique owner thread to

every search node. Each thread T repeatedly executes the following:

1. T checks its message queue if any new nodes are in. For all new nodes n in T ’s

message queue, if it is not in the open list (not a duplicate), put n in the open list.

2. Expand node n with the highest priority in the open list. For every generated node c,

compute hash value H(c), and send c to the thread that owns H(c).

HDA* has two features which make it attractive as a parallel search algorithm. First,

there is little coordination overhead because HDA* communicates asynchronously, and

locks for an access to shared open/closed lists are not required because each thread has its

own local open/closed list. Second, the work distribution mechanism is simple, requiring

only a hash function. However, the effect of the hash function was not evaluated empiri-

cally, and the importance of the choice of hash function may not have been fully understood

or appreciated – at least one subsequent work which evaluated HDA* used an implemen-

tation of HDA* which failed to achieve uniform distribution of the nodes (see Section 2).

26

2.6 Zobrist Hashing (HDA∗[Z]) and Operator-Based Zo-

brist Hashing (HDA∗[Zoperator])

Since the work distribution in HDA* is completely determined by a global hash function,

the choice of the hash function is crucial to its performance. ? (?, 2013) noted that it was

desirable to use a hash function which uniformly distributed nodes among processors, and

used the Zobrist hash function (1970), described below. The Zobrist hash value of a state

s, Z(s), is calculated as follows. For simplicity, assume that s is represented as an array of

n propositions, s = (x0, x1, ..., xn). Let R be a table containing preinitialized random bit

strings (Algorithm 3).

Z(s) := R[x0] xor R[x1] xor · · · xor R[xn] (2.1)

Algorithm 2: HDA∗[Z]

Input: s = (x0, x1, ..., xn)
1 hash← 0;
2 for each xi ∈ s do
3 hash← hash xor R[xi];
4 Return hash;

Algorithm 3: Initialize HDA∗[Z]

Input: F : a set of features
1 for each x ∈ F do
2 R[x]← random();
3 Return R

In the rest of the thesis, we refer to the original version of HDA* by ? (?, 2013), which

used Zobrist hashing, as ZHDA* or HDA∗[Z].

Zobrist hashing seeks to distribute nodes uniformly among all processes, without any

consideration of the neighborhood structure of the search space graph. As a consequence,

27

communication overhead is high. Assume an ideal implementation that assigns nodes uni-

formly among threads. Every generated node is sent to another thread with probability

1 − 1
#threads

. Therefore, with 16 threads, > 90% of the nodes are sent to other threads, so

communication costs are incurred for the vast majority of node generations.

Operator-based Zobrist hashing (OZHDA*) (Jinnai & Fukunaga, 2016b) partially ad-

dresses this problem by manipulating the random bit strings in the randomized bitstring

table R such that for some selected states S, there are some operators A(s) for s ∈ S such

that the successors of s which are generated when a ∈ A(s) is applied to s are guaranteed

to have the same Zobrist hash value as s, forcing them to be assigned the same processor as

s. Although Jinnai and Fukunaga showed that OZHDA* reduces communication overhead

compared to Zobrist hashing (2016b), it may result in increased search overhead compared

to HDA∗[Z](the extent of which is unpredictable).

2.7 Abstraction (HDA∗[P ,Astate])

In order to minimize communication overhead in HDA*, Burns et al. (2010) proposed

AHDA*, which uses abstraction based node assignment. The abstraction strategy in AHDA*

applies the state space partitioning technique used in PBNF (Burns et al., 2010) and PSDD

(Zhou & Hansen, 2007), which projects nodes in the state space to abstract states. Af-

ter mapping states to abstract states, the AHDA* implementation by Burns et al. (2010)

assigns abstract states to processors using a perfect hashing and a modulus operator.

Thus, nodes that are projected to the same abstract state are assigned to the same thread.

If the abstraction function is defined so that children of node n are usually in the same

abstract state as n, then communication overhead is minimized. The drawback of this

method is that it focuses solely on minimizing communication overhead, and there is no

mechanism for equalizing load balance, which can lead to high search overhead.

HDA* with abstraction can be characterized by two parameters to decide its behavior

– a hashing strategy and an abstraction strategy. The AHDA* implementation by Burns

et al. (2010) implemented the hashing strategy using a perfect hashing and a modulus

28

operator, and an abstraction strategy following the construction for SDD (Zhou & Hansen,

2006b) (for domain-independent planning), or a hand-crafted abstraction (for the sliding

tiles puzzle and grid path-finding domains). Note that an abstraction strategy can itself be

seen as a type of hashing strategy, but in this thesis, we make the distinction between the

method used to project states onto some cluster of states (abstraction) and methods which

are used to map states (or abstract states) to processors (hashing).

Jinnai and Fukunaga (2016b) showed that AHDA* with a static Nmax threshold per-

formed poorly for a benchmark set with varying difficulty because a fixed size abstract

graph results in very poor load balance, and implemented Dynamic AHDA* (DAHDA*)

which dynamically sets the size of the abstract graph according to the number of features

(the state space size is exponential in the number of features). We evaluate DAHDA* in

detail in Appendix A.

2.8 Classification of HDA* variants and a Uniform Nota-

tion for HDA* variants (HDA∗[hash, abstraction])

At least 12 variants of HDA* have been proposed and evaluated in the previous litera-

ture. Each variant of HDA* can be characterized according to two parameters: a hashing

strategy used (e.g., Zobrist hashing or perfect hashing), and an abstraction strategy (which

corresponds to the strategy used to cluster states or features before the hashing, e.g., state

projection based on SDD).

Table 2.1 shows all of the HDA* variants that are discussed in this thesis. In order to be

able to clearly distinguish among these variants, we use the notation HDA∗[hash, abstraction]

throughout this thesis, where “hash” is the hashing strategy of HDA* and “abstraction”

is the abstraction strategy. Variants that do not use any abstraction strategy are denoted by

HDA∗[hash]. In cases where the unified notation is lengthy, we use the abbreviated name in

the text (e.g., “FAZHDA*” for HDA∗[Z ,Afeature/DTGfluency]).

29

For example, we denote AHDA* (Burns et al., 2010) using a perfect hashing and a

hand-crafted abstraction as HDA∗[P ,Astate], and AHDA* using a perfect hashing and a

SDD abstraction as HDA∗[P ,Astate/SDD]. We denote HDA* with Zobrist hashing without

any clustering (i.e., the original version of HDA* by ? ?, 2013) as HDA∗[Z]. We denote

OZHDA* as HDA∗[Zoperator], where Zoperator stands for Zobrist hashing using operator-

based initialization.

30

Table 2.1: Overview of all HDA* variants mentioned in this thesis

Algorithms Evaluated With Domain-Specific Solvers Using Domain-Specific, Feature Generation Techniques
method First proposed in

HDA∗[Z] ZHDA* : Original version, using
Zobrist hashing [Sec 6]

(?)

HDA∗[P] Perfect hashing. [Sec 1.4] (Burns et al., 2010)
HDA∗[P ,Astate] AHDA* with perfect hashing and

state-based abstraction [Sec 7]
(Burns et al., 2010)

HDA∗[Z ,Astate] AHDA* with Zobrist hashing and
state-based abstraction [Sec 7]

trivial variant of
HDA∗[P ,Astate]

HDA∗[Hyperplane] Hyperplane work distribution (Sec
1.3)

(Kobayashi et al., 2011)

HDA∗[Z ,Afeature] Abstract Zobrist Hashing (feature
abstraction) [Sec 4]

(Jinnai & Fukunaga, 2016a)

Automated, Domain-Independent Feature Generation Methods Implemented for Parallelized, Classical Planner
method First proposed in

HDA∗[Z] Original version, using Zobrist
hashing [Sec 2]

(?)

HDA∗[Z ,Astate/SDD] AHDA* with Zobrist hashing and
SDD-based abstraction [Sec 6]

trivial variant of
HDA∗[P ,Astate/SDD], which
was ussed for classical planning
in (Burns et al., 2010); uses
Zobrist-based hashing instead of
perfect hashing.

HDA∗[Z ,Astate/SDDdynamic] DAHDA*: Dynamic AHDA* [Sec
7 & Append. A]

(Jinnai & Fukunaga, 2016b)

HDA∗[Z ,Afeature/DTGgreedy] GAZHDA*: Greedy Abstract Fea-
ture Generation [Sec 2.1]

(Jinnai & Fukunaga, 2016a)

HDA∗[Z ,Afeature/DTGfluency] FAZHDA*: Fluency-Dependent
Abstract Feature Generation [Sec
2.2]

(Jinnai & Fukunaga, 2016b)

HDA∗[Zoperator] OZHDA*: Operator-based Zobrist
[Sec 6]

(Jinnai & Fukunaga, 2016b)

HDA∗[Z ,Afeature/DTGsparsity] GRAZHDA*/sparsity: Graph
partitioning-based Abstract Fea-
ture Generation using the sparsity
cut objective [Sec 6]

This thesis

31

Chapter 3

Analysis of Parallel Overheads in

Multicore Best-First Search

As discussed in Section 3, there are three broad classes of parallel overheads in parallel

search: search overhead (SO), communications overhead (CO), and coordination (syn-

chronization) overhead. Since state-of-the-art parallel search algorithms such as HDA*

and PBNF have successfully eliminated coordination overhead, the remaining overheads

are SO and CO. Previous work has focused on evaluating SO quantitatively because SO is

fundamental overhead to the algorithm itself whereas CO is due to machine environment

which is difficult to evaluate and control. Thus, in this section, we first evaluate the SO of

HDA∗[Z] and SafePBNF.

Kishimoto et al. previously analyzed search overhead for HDA∗[Z] (2013). They mea-

sured R<, R=, and R>, the fraction of expanded nodes with f < f ∗, f = f ∗, and f > f ∗

(where f ∗ is optimal cost), respectively. They also measured Rr, the fraction of nodes

which were reexpanded. All admissible search algorithms must expand all nodes with

f < f ∗ in order to guarantee optimality. In addition, some of the nodes with f = f ∗

nodes are expanded. Thus, SO is the sum of R>, Rr, and some fraction of R=. These

metrics enable estimating the SO on instances which are too hard to solve in sequential A*.

Burns et al. analyzed the quality of nodes expanded by SafePBNF and HDA∗[P ,Astate]

33

by comparing the number of nodes expanded according to their f values, and showed

that HDA∗[P ,Astate] expands nodes with larger f value (lower quality nodes) compared to

SafePBNF (2010).

While these previous works measure the amount of search overhead, they do not pro-

vide a quantitative explanation for why such overheads occur. In addition, previous work

has not directly compared HDA∗[Z] and SafePBNF, as Burns et al. (2010) compared

SafePBNF to —HDA∗[P ,Astate] and another variation of HDA* which uses a suboptimal

hash function, which we refer to as HDA∗[P] in this thesis.

In this section, we propose a method to analyze SO and explain search overhead in

HDA* and SafePBNF. In light of the observation of this analysis, we revisit the comparison

of HDA* vs. SafePBNF on sliding-tile puzzle and grid path finding. We then analyze the

impact communications overhead has on overall performance.

3.1 Search Overhead and the Order of Node Expansion

on Combinatorial Search

Consider the global order in which states are expanded by a parallel search algorithm. If

a parallel A* algorithm expands states in exactly the same order as A*, then by defini-

tion, there is no search overhead. We ran A* and HDA∗[Z] on 100 randomly generated

instances of the 15-puzzle on Intel Xeon E5410 2.33 GHz CPU with 16 GB RAM, using

a 15-puzzle solver based on the solver code used in the work of Burns et al. (2010). We

recorded the order in which states were expanded. We used a random generator by Burns

to generate random instances1. The results from runs on 2 representative instances (one

“easy” instance which A* solves after 8966 expansions, and one “difficult” instance which

A* solves after 4265772 expansions), are shown in Figure 3-1, 3-2 and 3-3 (The results on

the other difficult/easy problems were similar to these representative instances – aggregate

results are presented in Sections 1.3-1.4).

1. The instance generator is at https://github.com/eaburns/pbnf/tree/master/tile-gen

34

0

5000

10000

15000

20000

25000

30000

35000

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00
90

00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

Thread 1
Thread 2

Strict Order
Goal

band effect

(a) HDA∗[Z] on an easy instance with 2 threads. HDA∗[Z] slightly
diverges from A* expansion order with 2 threads (band effect).

0

5000

10000

15000

20000

25000

30000

35000

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

Thread 1
Thread 2
Thread 3
Thread 4

Strict Order
Goal

band effect

burst effect

(b) HDA∗[Z] on an easy instance with 4 threads. At the beginning
of the search, HDA∗[Z] significantly diverges from A* expansion
order, which mostly results in search overhead (burst effect). The
band effect is larger with 4 threads than with 2 threads.

Figure 3-1: Illustration of Band Effect: Comparison node expansion order on an easy in-
stance of the 15-Puzzle. The vertical axis represents the order in which state s is expanded
by parallel search, and the horizontal axis represents the order in which s is expanded by
A*. The line y = x corresponds to an ideal, strict A* ordering in which the parallel ex-
pansion order is identical to the A* expansion order. The cross marks (“Goal”) represents
the (optimal) solution, and the vertical line from the goal shows the total number of node
expansions by A*. Thus, all nodes above this line result in SO.

In Figures 3-1, 3-2 and 3-3, the horizontal axis represents the order in which state

s is expanded by parallel search (HDA* or SafePBNF). The vertical axis represents the

35

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(a) HDA∗[Z] on an easy instance
with 8 threads. Both band and
burst effects are more significant
than with 4 threads.

 0

 5000

 10000

 15000

 20000

 25000

 0

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(b) HDA∗[P ,Astate] on an
easy instance with 8 threads.
HDA∗[P ,Astate] has a signifi-
cantly bigger band compared to
HDA∗[Z].

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0

 5
00

0

 1
00

00

 1
50

00

 2
00

00

 2
50

00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(c) SafePBNF on an easy instance
with 8 threads. As threads in
SafePBNF requires exclusive ac-
cess to nblocks, the expansion or-
der differs significantly from A*
(and HDA* variants).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

 9
00

0

 1
00

00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(d) HDA∗[Z] on an easy instance
with 8 threads with artificially
slowed expansion rate. The band
effect remains clear, indicating
that the band effect is not an ac-
cidental overhead cause by com-
munications or lock contention.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0

 5
00

0

 1
00

00

 1
50

00

 2
00

00

 2
50

00

 3
00

00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(e) HDA∗[P] on an easy instance
with 8 threads. HDA∗[P] has
a significantly bigger band com-
pared to other methods and many
threads are expanding unpromis-
ing (high f value) nodes. As a re-
sult, HDA∗[P] expands > 25000
nodes to solve the instance which
A* solves with 8966 expansions.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(f) HDA∗[Z] using FIFO
tiebreaking on an easy instance
with 8 threads (vs. A* using
FIFO tiebreaking).

 0
 5000

 10000
 15000
 20000
 25000
 30000

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8

Strict Order
Goal

 0
 5000

 10000
 15000
 20000
 25000
 30000

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8

Strict Order
Goal

 0
 5000

 10000
 15000
 20000
 25000
 30000

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8

Strict Order
Goal

Figure 3-2: Comparison of parallel vs sequential node expansion order on an easy instance
of the 15-Puzzle with 8 threads.

36

 0
 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06
 3e+06

 3.5e+06
 4e+06

 4.5e+06
 5e+06

 0

 5
00

00
0

 1
e+

06

 1
.5

e+
06

 2
e+

06

 2
.5

e+
06

 3
e+

06

 3
.5

e+
06

 4
e+

06

 4
.5

e+
06

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(a) HDA∗[Z] on a difficult in-
stance with 8 threads. As the in-
stance is difficult enough, the rel-
ative significance of burst effect
becomes negligible.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 0

 1
e+

06

 2
e+

06

 3
e+

06

 4
e+

06

 5
e+

06

 6
e+

06

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(b) HDA∗[P ,Astate] on a dif-
ficult instance with 8 threads.
As with the easy instance,
HDA∗[P ,Astate] has a bigger
band than HDA∗[Z] on a difficult
instance.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 0

 5
00

00
0

 1
e+

06

 1
.5

e+
06

 2
e+

06

 2
.5

e+
06

 3
e+

06

 3
.5

e+
06

 4
e+

06

 4
.5

e+
06

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(c) SafePBNF on a difficult in-
stance with 8 threads. Because
SafePBNF requires each thread
to explore each nblock exclu-
sively, the order of node ex-
pansion differs significantly from
A*. SafePBNF retains explor-
ing promising nodes by switch-
ing nblocks at the cost of commu-
nication and coordination over-
head.

 0
 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06
 3e+06

 3.5e+06
 4e+06

 4.5e+06
 5e+06

 0

 5
00

00
0

 1
e+

06

 1
.5

e+
06

 2
e+

06

 2
.5

e+
06

 3
e+

06

 3
.5

e+
06

 4
e+

06

 4
.5

e+
06

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(d) HDA∗[Z] on a difficult in-
stance with 8 threads with ar-
tificially slowed expansion rate.
We did not observe a significant
difference from HDA∗[Z]without
slow expansion.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 0

 1
e+

06

 2
e+

06

 3
e+

06

 4
e+

06

 5
e+

06

 6
e+

06

 7
e+

06

 8
e+

06

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(e) HDA∗[P] on a difficult in-
stance with 8 threads. HDA∗[P]
has the biggest band effect,
significantly diverged from A*.
HDA∗[P] expands > 7, 000, 000
nodes to solve the instance which
A* solves with 4, 000, 000 ex-
pansions.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0

 5
00

00
0

 1
e+

06

 1
.5

e+
06

 2
e+

06

 2
.5

e+
06

 3
e+

06

 3
.5

e+
06

 4
e+

06

 4
.5

e+
06

 5
e+

06

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(f) HDA∗[Z] using FIFO
tiebreaking on a difficult instance
with 8 threads (vs. A* using
FIFO tiebreaking).

 0
 5000

 10000
 15000
 20000
 25000
 30000

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8

Strict Order
Goal

 0
 5000

 10000
 15000
 20000
 25000
 30000

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8

Strict Order
Goal

 0
 5000

 10000
 15000
 20000
 25000
 30000

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8

Strict Order
Goal

Figure 3-3: Comparison of node expansion order on a difficult instance of the 15-Puzzle
with 8 threads. The average node expansion order divergence of scores are HDA∗[Z]: d̄ =
10, 330.6, HDA∗[Z] (slowed): d̄ = 8, 812.1, HDA∗[P ,Astate]: d̄ = 245, 818, HDA∗[P]:
d̄ = 4, 469, 340, SafePBNF: d̄ = 140, 629.4.

37

A* expansion order of state s, which is the order in which sequential A* expands node

s. Note that although standard A* would terminate after finding an optimal solution, we

modified sequential A* for this set of experiments so that it continues to search even after

the optimal solution has been found. This is because parallel search expands nodes that are

not expanded by sequential A* (i.e., search overhead), and we want to know for all states

expanded by parallel search which are not usually expanded by sequential A*, how much

the parallel search has diverged from the behavior of sequential A*.

The line y = x corresponds to an ideal, strict A* ordering in which the parallel ex-

pansion ordering is identical to the A* expansion order. The cross marks (“Goal”) in the

figures represents the (optimal) solution found by A*, and the vertical line from the goal

shows the total number of node expansions in A*. Thus, all nodes above this line results in

SO. Note that unlike sequential A*, parallel A* can not terminate immediately after find-

ing a solution, even if the heuristic is consistent, because when parallel A* finds an optimal

solution it is possible that some nodes with f < f ∗ have not been expanded (because they

are assigned to a processor which is different from the processor where the solution was

found).

Although the traditional definition of A* (Hart et al., 1968b) specifies that nodes are

expanded in order of nondecreasing f -value (i.e., best-first ordering), this is not sufficient

to define a canonical node expansion ordering for sequential A* because many nodes can

have the same f -value. A tie-breaking policy can be used to impose a unique, canonical

expansion ordering for sequential A*. Our sequential A* uses a LIFO tie-breaking policy,

which has been shown to result in good performance on the 15-puzzle (Burns, Hatem,

Leighton, & Ruml, 2012), as well as domain-independent planning (Asai & Fukunaga,

2016). In addition, all of our HDA* variants, as well as SafePBNF uses LIFO tie-breaking

for each local open list. Thus, by “strict A*” order, we mean “the order in which A* with

LIFO tie-breaking expands nodes”, and in Figures 3-1, 3-2 and 3-3 compare the expansion

ordering of this ordering vs. HDA*/SafePBNF with local LIFO tiebreaking.

38

To verify that the results are not dependent on the particular tie-breaking policy, Figures

3-2f and 3-3f show results where both sequential A* and the parallel algorithms use FIFO

tie-breaking. These show that the results are not qualitatively affected by the choice of

tie-breaking policy.

By analyzing the results, we observed three causes of search overhead on HDA*, (1)

Band Effect, the divergence from the A* order due to load imbalance, (2) Burst Effect, an

initialization overhead, and (3) node reexpansions. Below, we explain and discuss each of

these overheads.

3.1.1 Band Effect

The order in which states are expanded by HDA∗[Z] is fairly consistent with sequential

A*. However, there is some divergence from the strict A* ordering, within a “band” that

is symmetrical around the strict A* ordering line. For example, in Figure 3-1a, we have

highlighted a band showing that the (approximately) 5000’th state expanded by HDA*

corresponds a strict A* order between 4500-5500 (i.e., a band width of approximately

1000 at this point in the search). The width of the band tends to increase as the number

of threads increases (see the bands in Figure 3-1a, 3-1b, 3-2a). Although the width of the

band tends to increase as the search progresses, the rate of growth is relatively small. Also,

the harder the instance (i.e., the larger the number of nodes expanded by A*), the narrower

the band tends to be (Figure 3-3a).

A simple explanation for this band effect is load imbalance. Suppose we use 2 threads,

and assume that threads t1 and t2 share p and 1 − p of the nodes with f value = fi for

each fi. Consider the n’th node expanded by t1. This should roughly correspond to the
n
p
’th node expanded by sequential A*; at the same time, t2 should expand the node which

roughly corresponds to the n
1−p

’th node expanded by sequential A*. In this case, the band

size is |n
p
− n

1−p
|. Therefore, if p = 0.5 (perfect load balance), the band is small, and as p

diverges from 0.5, the band size becomes larger.

39

One possible, alternative interpretation of the band effect is that it is somehow related

to or caused by other factors such as communications overhead or lock contention. To test

this, we ran HDA∗[Z] on 8 cores where the state expansion code was intentionally slowed

down by adding a meaningless but time-consuming computation to each state expansion.2

If the band effect was caused by communications or lock contention related issues, it should

not manifest itself if the node expansion rate is so slow that the relative cost of communi-

cations and synchronization is very small. However, as shown in Figure 3-2d and 3-3d,

the band effect remains clearly visible even when the node expansion rate is very slow,

indicating that the band effect is not an accidental overhead caused by communications or

lock contention (similar results were obtained for other instances).

Observation 1 The band effect on HDA∗[Z] represents load imbalance between threads.

The width of the band determines the extent to which superlinear speedup or search over-

head (compared to sequential A*) can occur. Furthermore, the band effect is independent

of node evaluation rate.

The expansion order of SafePBNF is shown in Figure 3-2c and 3-3c. Because SafePBNF

requires each thread to explore each nblock (and duplicated detection scope) exclusively,

the order of node expansion is significantly different from A*. However, SafePBNF tries to

explore promising nodes by switching among nblocks to focus on nblocks which contain

the most promising nodes. This requires communication and coordination overhead, which

increases the walltime by about <10% of the time on the 15-puzzle (Burns et al., 2010).

3.1.2 Burst Effect

At the beginning of the search, it is possible for the node expansion order of HDA* to

deviate significantly from strict A* order due to a temporary “burst effect”. Since there

is some variation in the amount of time it takes to initialize each individual thread and

2. At the beginning of the search on each thread, we initialize a thread-local, global integer i to 7. On
each thread, after each node expansion, we perform the following computation 100,000 times: j =
11i mod 9999943, and then set i ← j. This is a heavy computation with a small memory footprint and
is intended to occupy the thread without causing additional memory accesses.

40

populate all of the thread open lists with “good” nodes, it is possible that some threads

may start out expanding nodes in poor regions of the search space because good nodes

have not yet been sent to their open lists from threads that have not yet completed their

initialization. For example, suppose that n1 is a child of the root node n0, and n1 has a

significantly worse f -value than other descendants of n0. Sequential A* will not expand

n1 until all nodes with lower f -values have been expanded. However, at the beginning of

search, n1 may be assigned to a thread t1 whose queue q1 is empty, in which case t1 will

immediately expand n1. The children of n1 may also have f -values which are significantly

worse than other descendants of n0, but if those children of n1 are in turn assigned to threads

with queues that are (near) empty or otherwise populated by other “bad” nodes with poor

f -values, then those children will get expanded, and so on. Thus, at the beginning of the

search, many such bad nodes will be expanded because all queues are initially empty, bad

nodes will continue to be expanded until the queues are filled with “good” nodes. As the

search progresses, all queues will be filled with good nodes, and the search order will more

closely approximate that of sequential A*.

Furthermore, these burst-overhead nodes tend to be reached through suboptimal paths

(because states necessary for better paths are unavailable during the burst phase), and there-

fore tend to be revisited later via shorter paths, contributing to revisited node overhead.

The burst phenomenon is clearly illustrated in Figure 3-1b and 3-2a, which shows the

behavior of HDA∗[Z] with 8 threads on a small 15-puzzle problem (solved by A* in 8966

expansions). The large vertically oriented cluster at the left of the figure shows that states

with a strict A* order of over 30,000 are being expanded within the first 2,000 expansions

by HDA*. The A* implementation we used expands over 85,248 nodes per second (the

node expansion includes overhead for storing node information in the local data structure,

thus slower than base implementation by Burns et al.), this burst phenomenon is occurring

within the first 0.023 seconds of search.

Figure 3-3a shows that on a harder problem instance which requires > 4,000,000 state

expansions by A*, the overall effect of this initial burst overhead is negligible.

41

Figure 3-2d shows that when the node expansion rate is artificially slowed down, the

burst effect is not noticeable even if the number of states expansions necessary to solve

the problem with A* is small (< 10,000). This is consistent with our explanation above

that the burst effect is caused by brief, staggered initialization of the threads – when state

expansions are slow, the staggered start becomes irrelevant.

From the above, we can conclude that the burst effect is only significant when the

problem can be solved very quickly (< 0.88 seconds) by A* and the node expansion rate is

fast enough that the staggered initialization can cause a measurable effect.

The practical significance of the burst effect depends on the characteristics of the appli-

cation domain. In puzzle-solving domains, the time scales are usually such that the burst

effect is inconsequential. However, in domains such as real-time path planning, the total

time available for planning can be just as a fraction of a second, so the burst effect can have

a significant effect.

Observation 2 The burst effect in HDA∗[Z] can dominate search behavior on easy prob-

lems, resulting in large search overhead. However, the burst effect is insignificant on harder

problems, as well as when node expansion rate is slow.

The burst effect is less pronounced in SafePBNF compared to HDA∗[Z], because a

thread in SafePBNF prohibits other threads from exploring its duplicate detection scope.

The nodes shown in Figure 3-2c are actually band effect, which means that it is persistent

through the search (Figure 3-3c).

3.1.3 Node Reexpansions

With a consistent heuristic, A* never reexpands a node once it is saved in the closed list,

because the first time a node is expanded, we are guaranteed to have reached through a

lowest-cost path to that node. However, in parallel best-first search, nodes may need to

be reexpanded even if they are in the closed list. For example, in HDA*, each processor

selects the best (lowest f -cost) node in its local open list, but the selected node may not

have the current globally lowest f -value. As a result, although HDA* tends to find shortest

42

paths to a node first, the paths may not be lowest-cost paths, and some node n which is

expanded by some thread in HDA* may have been reached through a suboptimal path, and

must later be reexpanded after it is reached through a lower-cost path.

This is not a significant overhead for unit-cost domains because shorter paths always

have smaller cost. In fact, we observed that HDA∗[Z], HDA∗[P ,Astate] and SafePBNF

had low reexpansion rates for on the 15-puzzle. For HDA∗[Z] with 8 threads, the average

reexpansion rate Rr was 2.61× 10−5 for 100 instances.

Node reexpansions are more problematic in non-unit cost domains, because a shorter

path does not always mean a smaller cost. (Kobayashi et al., 2011) analyzed node reexpan-

sion on multiple sequence alignment which HDA∗[Z] suffers from high node duplication

rate. We discuss node reexpansions by HDA* on the multiple sequence alignment problem

in Section 1.3.

3.1.4 The Impact of Work Distribution Method on the Order of Node Expansion

In addition to HDA∗[Z], we investigated the order of node expansion on HDA∗[P ,Astate],

HDA∗[P], and SafePBNF. The abstraction used for HDA∗[P ,Astate] ignores the positions

of all tiles except tiles 1,2, and 3 (we tried (1) ignoring all tiles except tiles 1,2, and 3,

(2) ignoring all tiles except tiles 1,2,3, and 4, (3) mapping cells to rows, and (5) mapping

cells to the blocks , and chose (1) because it performed the best). HDA∗[P] is an instance

of HDA* which is called “HDA*” in the work of Burns et al. (2010). Unlike the origi-

nal HDA* by ? (?), which uses Zobrist hashing, HDA∗[P] uses a perfect hashing scheme

which maps permutations (tile positions) to lexicographic indices (thread IDs) by Korf and

Schultze (2005). A perfect hashing scheme computes a unique mapping from permuta-

tions (abstract state encoding) to lexicographic indices (thread ID)3. While this encoding is

effective for its original purpose of efficient representation of states for external-memory

3. The permutation encoding used by HDA*[P] is defined as: H(s) = c1k! + c2(k− 1)! + ...+ ck1! where
the position of tile p(i) is the ci-th smallest number in the set {1, 2, 3, ..., 16} \ {c1, c2, ...ci−1}. State s is
sent to a process with process id H(s) mod n, where n is the number of processes. Therefore, if n = 8
then H(s)modn = {ck−23! + ck−12! + ck1!}, thus it only depends on the relative positions of tiles 12,
13, and 14. In addition, processes with odd/even id only send nodes to processes with odd/even id unless
the position of 14 changes.

43

Table 3.1: Comparison of the average divergence (d̄) and premature expansions (p̄) for the
50 most difficult 15-puzzle instances.

d̄ p̄
HDA∗[Z] 10,330.6 563,605
SafePBNF 140,629.4 598,759
HDA∗[P ,Astate] 245,818.0 2,595,540
HDA∗[P] 4,469,340.0 3,725,942

search, it was not designed for the purpose of work distribution. For SafePBNF, we used

the configuration used in (Burns et al., 2010).

Figures 3-2 and 3-3 compare the expansion orders of HDA∗[Z], HDA∗[P ,Astate], HDA∗[P],

and SafePBNF. Although some trends are obvious by visual inspection, e.g., the band ef-

fect is larger for HDA∗[P ,Astate] than on HDA∗[Z], a quantitative comparison is useful to

gain more insight.

Thus, we calculated the average divergence of each algorithm, where divergence of a

parallel search algorithm B on a problem instance I is defined as follows: Let NA∗(s)

be the order in which state s is expanded by A*, and let NB(s) be order in which s is

expanded by B, and let V (A∗, B) be the set of all states expanded by both A* and P . In

case s is reexpanded by an algorithm, we use the first expansion order. Then the divergence

of B from A* on instance I is d(I) =
∑

s∈V (A∗,B) |NA∗(s) − NB(s)| / |V (A∗, B)|. We

computed the average divergence d̄ for 50 most difficult instances in the instance set.

In addition to the divergence d, we calculated the average number of premature expan-

sions p, which is the number of nodes expanded before all nodes with lower f value than

that node are expanded. Unlike the divergence, the number of premature expansions is not

significantly influenced by the expansion order within the same f value.

The average divergence and premature expansions for these difficult instances are shown

in Table 3.1. These results indicate that the order of node expansion of HDA∗[Z] is the most

similar to that of A*. Therefore, HDA∗[Z] is expected to have the least SO. The abstraction-

based methods, HDA∗[P ,Astate] and SafePBNF, have significantly higher divergence than

HDA∗[Z], which is not surprising, since by design, these methods do not seek to simulate

44

A* expansion order. Finally, HDA∗[P] has a huge divergence, and is expected to have very

high SO – it is somewhat surprising that a work distribution function can have divergence

(and search overhead) which is so much higher than methods that focus entirely on reduc-

ing communications overhead such as HDA∗[P ,Astate]. We evaluate the SO and speedup

of each method below in Section 2.

3.2 Revisiting HDA* (HDA∗[Z], HDA∗[P ,Astate], HDA∗[Z ,Astate],

HDA∗[P]) vs. SafePBNF for Admissible Search

Previous work compared HDA∗[P], HDA∗[P ,Astate], and SafePBNF on the 15-puzzle and

grid pathfinding problems (Burns et al., 2010). They also compared SafePBNF with HDA∗[P ,Astate]

on domain-independent planning. The overall conclusion of this previous study was that

among the algorithms evaluated, SafePBNF performed best for optimal search. We now

revisit this evaluation, in light of the results in the previous section, as well as recent im-

provements to implementation techniques. There are three issues to note regarding the

experimental settings used by Burns et al.:

Firstly, the previous comparison did not include HDA∗[Z], the original HDA* which

uses Zobrist hashing (?; Kishimoto et al., 2013). Burns et al. evaluated two variants of

HDA*: HDA∗[P] (which was called “HDA*” in their paper) and HDA∗[P ,Astate] (called

“AHDA*” in their paper). As shown above, the node expansion order of HDA∗[Z] has

a much smaller divergence from A* compared to SafePBNF and HDA∗[P ,Astate]. While

HDA∗[Z] seeks to minimizes search overhead and both HDA∗[P ,Astate] as well as SafePBNF

seeks to reduce communications overhead, HDA∗[P] minimizes neither communications

nor search overheads (as shown above, it has much higher expansion order divergence

than all other methods), so HDA∗[P] is not a good representative of the HDA* frame-

work. Therefore, a direct comparison of SafePBNF and HDA∗[P ,Astate] (which minimize

communications overhead) to HDA∗[Z] (which minimizes search overhead) is necessary in

order to understand how these opposing objectives affect performance.

45

Secondly, the 15-puzzle and grid search instances used in the previous study only re-

quired a small amount of search, so the behavior of these algorithms on difficult problems

has not been compared. In the previous study, the grid domains consisted of 5000x5000

grids, and the 15-puzzle instances were all solvable within 3 million expansions by A*.

Since grid pathfinding solvers can generate 106 nodes per second, and 15-puzzle solvers

can generate 0.5 × 106 nodes per second, these instances are solvable in under a second

by a 8-core parallel search algorithm. As shown in section 1, when the search only takes a

fraction of a second, HDA* incurs significant search overhead due to the burst effect, but

the burst effect is a startup overhead whose impact is negligible on problem instances that

require more search.

Thirdly, in the previous study, for all algorithms, a binary heap implementation for

the open list priority queue was used, which incurs O(logN) costs for insertion. This

introduces a bias for PBNF over all of the HDA* variants. PBNF uses a separate binary

heap for each n-block – splitting the open list into many binary heaps greatly decreases

the N in the O(logN) cost node insertions compared to algorithms such as HDA* which

use a single open list per thread. However, it has been shown that a bucket implementation

(O(1) for all operations) results in significantly faster performance on state-of-the-art A*

implementations (Burns et al., 2012).

Therefore, we revisit the comparison of HDA* and SafePBNF by (1) using Zobrist

hashing for HDA* (i.e., HDA∗[Z]) in order to minimize search overhead (2) using both

easy instances (solvable in < 1 second) and hard instances (requiring up to 1000 seconds

to solve with sequential A*) of the sliding tiles and grid path-finding domains in order to

isolate the startup costs associated with the burst effect, and (3) using both bucket and heap

implementations of the open list in order to isolate the effect of data structure efficiency (as

opposed to search efficiency).

For the 15-puzzle, we used the standard set of 100 instances by Korf (1985), and used

the Manhattan Distance heuristic. We used the same configuration used in Section 1.4

for all algorithms (except without the instrumentation to storing the expansion order in-

46

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.1 1 10 100 1000

so
lv

ed
 in

st
an

ce
s

walltime

HDA*[Z]
SafePBNF

HDA*[Z,Astate]
HDA*[P,Astate]

HDA*[P]

(a) 15-puzzle (bucket open list)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.1 1 10 100 1000

so
lv

ed
 in

st
an

ce
s

walltime

HDA*[Z]
SafePBNF

HDA*[Z,Astate]
HDA*[P,Astate]

HDA*[P]

(b) 15-puzzle (heap open list)

 0

 5

 10

 15

 20

 25

 30

 0.01 0.1 1 10 100

so
lv

ed
 in

st
an

ce
s

walltime

HDA*[Z]
SafePBNF

HDA*[Z,Astate]
HDA*[P,Astate]

(c) 24-puzzle (bucket open list)

 0

 10

 20

 30

 40

 50

 60

 0.1 1 10

so
lv

ed
 in

st
an

ce
s

walltime

HDA*[Z,Astate]
HDA*[P,Astate]

SafePBNF
HDA*[Z]

(d) Grid Pathfinding (bucket open list)

Figure 3-4: Comparison of the number of instances solved within given walltime. The
x axis shows the walltime and y axis shows the number of instances solved by the given
walltime. In general, HDA∗[Z] outperforms SafePBNF on difficult instances (> 10 sec-
onds) and SafePBNF outperforms HDA∗[Z] on easy instances (< 10 seconds).

formation for each state). For the 24-puzzle, we used 30 instances randomly generated

which could be solved within 1000 seconds by sequential A*, and used the pattern database

heuristic (Korf & Felner, 2002). The abstraction used by HDA∗[P ,Astate], HDA∗[Z ,Astate],

and SafePBNF ignores the numbers on all of the tiles except tiles 1,2,3,4, and 5 (we tried

(1) ignoring all tiles except tiles 1-5, (2) ignoring all tiles except tiles 1-6, (3) ignoring all

tiles except tiles 1-4, (4) mapping cells to rows, and (5) mapping cells to the blocks, and

chose (1), the best performer). For (4-way unit-cost) grid path finding, we used 60 instances

based obtained by randomly generating 5000x5000 grids where 0.45 of the cells are obsta-

cles. We used Manhattan distance as a heuristic. The abstraction used for HDA∗[P ,Astate]

and HDA∗[Z ,Astate] maps 100x100 nodes to an abstract node, which performed the best

47

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10000 100000 1e+06 1e+07 1e+08

so
lv

ed
 in

st
an

ce
s

expansion

HDA*[Z]
SafePBNF

HDA*[Z,Astate]
HDA*[P,Astate]

HDA*[P]

(a) 15-puzzle (bucket open list)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10000 100000 1e+06 1e+07 1e+08

so
lv

ed
 in

st
an

ce
s

expansion

HDA*[Z]
SafePBNF

HDA*[Z,Astate]
HDA*[P,Astate]

HDA*[P]

(b) 15-puzzle (heap open list)

 0

 5

 10

 15

 20

 25

 30

 10000 100000 1e+06 1e+07 1e+08

so
lv

ed
 in

st
an

ce
s

expansion

HDA*[Z]
SafePBNF

HDA*[Z,Astate]
HDA*[P,Astate]

(c) 24-puzzle (bucket open list)

 0

 10

 20

 30

 40

 50

 60

 100000 1e+06 1e+07

so
lv

ed
 in

st
an

ce
s

expansion

HDA*[Z,Astate]
HDA*[P,Astate]

SafePBNF
HDA*[Z]

(d) Grid Pathfinding (bucket open list)

Figure 3-5: Comparison of the number of instances solved within given number of node
expansions. The x axis shows the walltime and y axis shows the number of instances solved
by the given node expansion. Overall, HDA∗[Z] has the lowest SO except in grid pathfind-
ing, where HDA∗[Z] suffers from high node duplication because the node expansion is
extremely fast in grid pathfinding. HDA∗[Z ,Astate] and HDA∗[P ,Astate] expanded almost
identical number of nodes in 24-puzzle.

among 5x5, 10x10, 50x50, 100x100, and 500x500 (Section 3). For SafePBNF we used the

same configuration used in previous work (Burns et al., 2010). The queue of free nblocks is

implemented using binary tree as there were no significant difference in performance using

vector implementation.

Figure 3-4 compares the number of instances solved as a function of wall-clock time

by HDA∗[Z], HDA∗[P ,Astate], HDA∗[P], and SafePBNF. The results show that on the 15-

puzzle and 24-puzzle, grid pathfinding, PBNF initially outperforms HDA∗[Z], but as more

time is consumed, HDA∗[Z] solves more instances than PBNF, i.e., PBNF outperforms

48

HDA∗[Z] on easier problems due to the burst effect (Section 1.2), while HDA∗[Z] outper-

forms SafePBNF on more difficult instances because after the initial burst effect subsides,

HDA∗[Z] diverges less from A* node expansion order and therefore incurs less search over-

head.

Observation 3 HDA∗[Z] significantly outperforms SafePBNF on 15-puzzle and 24-puzzle

instances that require a significant amount of search. On instances that can be solved

quickly, SafePBNF outperforms HDA∗[Z] due to the burst effect.

Comparing the results for the 15-puzzle for the bucket open list implementation (Figure

3-4a) and the heap open list implementation (Figure 3-4b), we observe that all of the HDA*

variants benefit from using a bucket open list implementation. Not surprisingly, for the

more difficult problems, the benefit of the more efficient data structure (O(1) vs. O(logN)

insertion for N states) becomes more significant. PBNF does not benefit as much from the

bucket open list because in PBNF, there is a separate queue associated with each n-block,

so the difference between bucket and heap implementations is O(1) vs O(logN/B), where

B is the number of n-blocks.

Figure 3-5 compares the number of solved instances within the number of node ex-

panded. Due to the burst effect, with small number of expansions, HDA∗[Z] solves fewer

instances compared to SafePBNF, especially in grid domain.

3.2.1 On the effect of hashing strategy in AHDA* (HDA∗[Z ,Astate] vs. HDA∗[P ,Astate])

In addition to the original implementation of AHDA* (Burns et al., 2010), which distributes

abstract states using a perfect hashing (HDA∗[P ,Astate]), we implemented HDA∗[Z ,Astate]

which uses Zobrist hashing to distribute. Interestingly, Figure 3-5 shows that both HDA∗[Z ,Astate]

and HDA∗[P ,Astate] achieved lower search overhead than HDA∗[P] in 15-puzzle. A pos-

sible explanation is that the abstraction is hand-crafted so that the abstract nodes are sized

equally and distributed evenly in the search space. On the other hand, as an abstract

state is already a large set of nodes, distributing abstract states using Zobrist hashing

(HDA∗[Z ,Astate]) does not yield significantly better search overhead compared to HDA∗[P ,Astate].

49

3.3 The Effect of Communication Overhead on Speedup

Although HDA∗[Z] is competitive with the abstraction-based methods (HDA∗[P ,Astate] and

SafePBNF) on the sliding tile puzzle domains, Figure 3-4d shows that HDA∗[P ,Astate] and

SafePBNF significantly outperformed HDA∗[Z] in the grid path-finding domain. Interest-

ingly, Figure 3-5d shows that HDA∗[P ,Astate] and HDA∗[Z] solve roughly the same number

problems, given the same number of node expansions. This indicates that the performance

difference between HDA∗[P ,Astate] and HDA∗[Z] on the grid domain is not due to search

overhead, but rather due to the fact that HDA∗[P ,Astate] is able to expand nodes faster than

HDA∗[Z]. In previous work, Burns et al showed that HDA∗[P] suffers from high communi-

cations overhead on the grid domain (2010).4

Although HDA* uses asynchronous communication, sending/receiving message re-

quire access to data structure such as message queues. Communication costs is crucial

in grid path finding because the node expansion rate is extremely high in grid path-finding.

Fast node expansion means that the relative time to send a node is higher. Our grid solver

expands 955,789 node/second, much faster than our 15-puzzle (bucket) solver (565,721

node/second). Thus, the relative cost of communication in grid domain is twice as high as

that of 15-puzzle.

To understand the impact of communications overhead, we evaluated the speedup, com-

munications overhead (CO), and search overhead (SO) of HDA∗[P ,Astate] with different

abstraction sizes. The abstraction used for HDA∗[P ,Astate] maps k × k blocks in the grid

to a single abstract state. Note that in this domain, an abstraction size of 1 corresponds to

HDA∗[P]. Table 3.2 shows the results. As the size of the k × k block increases, commu-

nications is reduced, and as a result, 100x100 HDA∗[P ,Astate] is faster than HDA∗[Z] and

4. Burns et al. evaluated HDA* (HDA∗[P]) on the grid problem using a perfect hash function processor(s)
= (x · ymax + y) mod p (p is the number of processes) of the state location for work distribution. This
hash function results in different behavior according to the number of processes. If (ymax mod p) = 0,
then all cells in each row have the same hash value, but all pairs of adjacent rows are guaranteed to have
different hash values. If (ymax mod p) ̸= 0, all pairs adjacent cells are guaranteed to have different
hash values. Both conditions result in high communication overhead, thus HDA∗[P ,Astate] (100x100)
significantly outperformed both condition.

50

HDA∗[P] although it has the same amount of SO. However, there is a point of diminishing

returns due to load imbalance – in the extreme case when the entire N ×N grid is mapped

to a single abstract state, there would be no communications but only 1 processor would

have work. Thus, a 500x500 abstraction results in worse performance than a 100x100

abstraction.

Table 3.2: Comparison of speedup, communication overhead, and search overhead of
HDA∗[P ,Astate] on grid path finding using different abstraction size. CO: communication
overhead (= # nodes sent to other threads

nodes generated), SO: search overhead (= # nodes expanded in parallel
#nodes expanded in sequential search−1).

abstraction size speedup CO SO
HDA∗[Z] 2.61 0.87 0.05
1x1 (= HDA∗[P]) 2.57 0.87 0.05
5x5 3.50 0.19 0.05
10x10 3.82 0.10 0.06
50x50 4.16 0.02 0.06
100x100 4.22 0.01 0.05
500x500 3.24 0.01 0.42

Note that while this experiment was run on a a single multicore machine using pthreads

and low-level instructions (try lock) for moving states among processors, communications

overhead becomes an even more serious issue using interprocess communication (e.g. MPI)

on distributed environment because the communication cost for each message is higher on

such environments.

Observation 4 SafePBNF and HDA∗[P ,Astate] outperform HDA∗[Z] on the grid pathfind-

ing problem, even though SafePBNF and HDA∗[P ,Astate] require more node expansions

than HDA∗[Z]. Communications overhead accounts for the poor performance of HDA∗[Z]

on grid pathfinding.

51

3.4 Summary of the Parallel Overheads for HDA∗[Z] and

HDA∗[P ,Astate]

Table 3.3 summarizes the comparison of the Zobrist hashing based HDA∗[Z] and structured

abstraction based HDA∗[P ,Astate] work distribution strategies on the sliding-tile puzzle

and grid pathfinding domains. As we showed in Section 1.4 and 2, HDA∗[Z] outperforms

HDA∗[P ,Astate] on sliding-tile puzzle domain because HDA∗[P ,Astate] suffers from high

SO. On the other hand, HDA∗[P ,Astate] outperforms HDA∗[Z] on grid pathfinding because

HDA∗[Z] has high CO (Section 3). In summary, both HDA∗[Z] and HDA∗[P ,Astate] have

clear weakness – HDA∗[Z] has no mechanism which explicitly seeks to reduce the amount

of communication, whereas HDA∗[P ,Astate] has no mechanism which explicitly minimizes

load balancing.

Table 3.3: Comparison of speedup, communication overhead, and search overhead of
HDA∗[Z] and HDA∗[P ,Astate] on 15-puzzle, 24-puzzle, and grid pathfinding with 8
threads. CO: communication overhead, SO: search overhead. HDA∗[Z] outperformed
HDA∗[P ,Astate] in 15-puzzle and 24-puzzle while HDA∗[P ,Astate] outperformed HDA∗[Z]
in grid pathfinding.

15-puzzle speedup CO SO
HDA∗[Z] 5.10 0.86 0.03
HDA∗[P ,Astate] 3.90 0.22 0.13
24-puzzle speedup CO SO
HDA∗[Z] 6.28 0.85 0.04
HDA∗[P ,Astate] 4.20 0.38 0.14
grid speedup CO SO
HDA∗[Z] 2.57 0.87 0.05
HDA∗[P ,Astate] 4.22 0.01 0.05

52

Chapter 4

Abstract Zobrist Hashing(AZH)

As we discussed in Section 3, both search and communication overheads have a significant

impact on the performance of HDA*, and methods that only address one of these over-

heads are insufficient. HDA∗[Z], which uses Zobrist hashing, assigns nodes uniformly to

processors, achieving near-perfect load balance, but at the cost of incurring communica-

tions costs on almost all state generations. On the other hand, abstraction-based methods

such as PBNF and HDA∗[P ,Astate] significantly reduce communications overhead by try-

ing to keep generated states at the same processor as where they were generated, but this

results in significant search overhead because all of the productive search may be performed

at 1 node, while all other nodes are searching unproductive nodes which would not be ex-

panded by A*. Thus, we need a more balanced approach which simultaneously addresses

both search and communication overheads.

Abstract Zobrist hashing (AZH) is a hybrid hashing strategy which augments the Zo-

brist hashing framework with the idea of projection from abstraction, incorporating the

strengths of both methods. The AZH value of a state, AZ(s) is:

AZ(s) := R[A(x0)] xor R[A(x1)] xor · · · xor R[A(xn)] (4.1)

53

where A is a feature projection function, a many-to-one mapping from each raw feature to

an abstract feature, and R is a pre-computed table for each abstract feature.

Thus, AZH is a 2-level, hierarchical hash, where raw features are first projected to

abstract features, and Zobrist hashing is applied to the abstract features. In other words,

we project state s to an abstract state s′ = (A(x0), A(x1), ..., A(xn)), and AZ(s) = Z(s′).

Figure 4-1 illustrates the computation of the AZH value for an 8-puzzle state.

AZH seeks to combine the advantages of both abstraction and Zobrist hashing. Com-

munication overhead is minimized by building abstract features that share the same hash

value (abstract features are analogous to how abstraction projects state to abstract states),

and load balance is achieved by applying Zobrist hashing to the abstract features of each

state.

Compared to Zobrist hashing, AZH incurs less CO due to abstract feature-based hash-

ing. While Zobrist hashing assigns a hash value for each node independently, AZH assigns

the same hash value to all nodes which share the same abstract features for all features,

reducing the number of node transfers. Also, in contrast to abstraction-based node assign-

ment, which minimizes communications but does not optimize load balance and search

overhead, AZH seeks good load balance, because the node assignment considers all fea-

tures in the state, rather than just a subset.

Algorithm 4: Initialize HDA∗[Z ,Afeature]

Input: F : a set of features, A: a mapping from features to abstract features
(abstraction strategy)

1 for each a ∈ {A(x)|x ∈ F} do
2 R′[a]← random();
3 for each x ∈ F do
4 R[x]← R′[A(x)];
5 Return R

AZH is simple to implement, requiring only an additional projection per feature com-

pared to Zobrist hashing, and we can pre-compute this projection at initialization (Algo-

rithm 4). Thus, there is no additional runtime overhead per node during the search. In fact,

54

except for initialization, the same code to Zobrist hashing can be used (Algorithm 2). The

projection function A(x) can be generated either hand-crafted or automated. Following the

notation of AHDA* in Section 7, we denote AZHDA* with hand crafted feature abstrac-

tion as HDA∗[Z ,Afeature], where Afeature stands for feature abstraction. The key difference

of HDA∗[Z ,Afeature] from HDA∗[Z ,Astate] is that HDA∗[Z ,Afeature] applies abstraction to

each feature and applies Zobrist hashing to abstract features, whereas HDA∗[Z ,Astate] ap-

plies abstraction to a state and applies Zobrist hashing to the abstract state.

00100101

10001100

00000111

10101110
2

1

4 1 2
3 5 6
7 8

3

x1=2

x2=3

x3=4

State
s

Feature
xi

Feature
Hash
R[xi]

State
Hash
Z(s)

(a) Zobrist hashing

01010001

01100010

00101100

00011111

2

1

4 1 2
3 5 6
7 8

State
s

Feature
xi

3

Abstract
Feature
Hash
R[A(xi)]

State
Hash
AZ(s)

1

2

3

Abstract
Feature
A(xi)

x1=2

x2=3

x3=4

A(x1)=1

A(x2)=1

A(x3)=2

(b) Abstract Zobrist hashing

Figure 4-1: Calculation of Abstract Zobrist Hash (AZH) value AZ(s) for the 8-puzzle: State
s = (x1, x2, ..., x8), where xi = 1, 2, ..., 9 (xi = j means tile i is placed at position j). The Zobrist
hash value of s is the result of xor’ing a preinitialized random bit vector R[xi] for each feature (tile)
xi. AZH incorporates an additional step which projects features to abstract features (for each feature
xi, look up R[A(xi)] instead of R[xi]).

55

4.1 Evaluation of Work Distribution Methods on Domain-

Specific Solvers

We evaluated the performance of the following HDA* variants on several standard bench-

mark domains with different characteristics.

• HDA∗[Z ,Afeature]: HDA* using AZH

• HDA∗[Z]: HDA* using Zobrist hashing (?)

• HDA∗[P ,Astate]: HDA* using Abstraction based work distribution (Burns et al.,

2010)

• HDA∗[P]: HDA* using a perfect hash function (Burns et al., 2010)

The experiments were run on an Intel Xeon E5-2650 v2 2.60 GHz CPU with 128 GB RAM,

using up to 16 cores.

The 15-puzzle experiments in Section 1.1 incorporated enhancements from the more

recent work by Burns et al. Burns et al. to the code used in Section 1, which is based on

the code by Burns et al. (2010), which includes HDA∗[P], HDA∗[P ,Astate], and SafePBNF

(we implemented 15-puzzle HDA∗[Z] and HDA∗[Z ,Afeature] as an extension of their code).

For the 24-puzzle and multiple sequence alignment (MSA), we used our own imple-

mentation of HDA* for overall performance (different from the code used in Section 2),

using the Pthreads library, try lock for asynchronous communication, and the Jemalloc

memory allocator (Evans, 2006). We implemented the open list as a 2-level bucket (Burns

et al., 2012) for the 15-puzzle and 24-puzzle, and a binary heap for MSA (binary heap was

faster for MSA).

Note that although we evaluated HDA∗[Z], HDA∗[P ,Astate], and SafePBNF on the on

the grid pathfinding problem in Section 3, we do not evaluate HDA∗[Z ,Afeature] on the grid

pathfinding problem because in the case of grid pathfinding, the obvious feature projection

function for HDA∗[Z ,Afeature] corresponds to the abstraction used by HDA∗[P ,Astate].

56

4.1.1 15-Puzzle

We solved 100 randomly generated instances with solvers using the Manhattan distance

heuristic. These are not the same instances as the 100 instances used in Section 1 be-

cause the solver used for this experiment was faster than the solver used in Section 11,

and some of the instances used in Section 1 were too easy for an evaluation of parallel

efficiency.2 We selected instances which were sufficiently difficult enough to avoid the

results being dominated by the initial startup overhead of the burst effect (Section 1.2) –

sequential A* required an average of 52.3 seconds to solve these instances. In addition

to HDA∗[Z ,Afeature], HDA∗[Z], and HDA∗[P ,Astate], we also evaluated SafePBNF (Burns

et al., 2010) and HDA∗[P].

The projections A(xi) (abstract features) we used for AZH in HDA∗[Z ,Afeature] are

shown in Figure 4-2b. The configurations for the other work distribution methods (HDA∗[Z],

HDA∗[P ,Astate], SafePBNF, and HDA∗[P]) were the same as in Section 1.

(a) 15-puzzle HDA∗[Z] (b) 15-puzzle HDA∗[Z ,Afeature]

(c) 24-puzzle HDA∗[Z] (d) 24-puzzle HDA∗[Z ,Afeature]

Figure 4-2: The hand-crafted abstract features used by AZH for 15 and 24-puzzle.

First, as discussed in Section 2, high search overhead is correlated with load balance.

Figure 4-3, which shows the relationship between load balance and search overhead, in-

1. In Section 1, the code is based on the code used in the work of Burns et al. (2010), while the code used
in this section incorporated all of the enhancements from their more recent work on efficient sliding tile
solver code (Burns et al., 2012)

2. This was intentional – in Section 1, we needed a distribution of instances that included easy instances to
highlight the burst effect (Section 1.2) as well as for comparison with other methods 2.

57

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

SO

LB

Z4

b4

P4

Z8

b8

P8

Z16

b16

P16

A4
A8

A16

Figure 4-3: Load balance (LB) and search overhead (SO) on 100 instances of the 15-Puzzle
for 4/8/16 threads. “A” = HDA∗[Z ,Afeature], “Z” = HDA∗[Z], “b” = HDA∗[P ,Astate], “P”
= HDA∗[P], e.g., “Z8” is the LB and SO for Zobrist hashing on 8 threads. 2-D error bars
show standard error of the mean for both SO and LB.

dicates a very strong correlation between high load imbalance and search overhead. We

discuss the relationship of load balance and search overhead in detail in Section 2.

Figure 4-4a shows the efficiency (= speedup
#cores

) of each method. HDA∗[P] performed

extremely poorly compared to all other HDA* variants and SafePBNF. The reason is clear

from Figure 4-4b, which shows the communication and search overheads. HDA∗[P] has

both extremely high search overhead and communication overhead compared to all other

methods. This shows that the hash function used by HDA∗[P] is not well-suited as a work

distribution function.

HDA∗[P ,Astate] had the lowest CO among HDA* variants (Figure 4-4b), and signif-

icantly outperformed HDA∗[P]. However, HDA∗[P ,Astate] has worse LB than HDA∗[Z]

(Figure 4-3), resulting in higher SO. For the 15-puzzle, this tradeoff is not favorable for

HDA∗[P ,Astate], and Figures 4-4a-4-3 show that HDA∗[Z], which has significantly better

LB and SO, outperforms HDA∗[P ,Astate].

According to Figure 4-4a, SafePBNF outperforms HDA∗[P ,Astate], and is comparable

to HDA∗[Z] on the 15-puzzle. Although our definition of communication overhead does not

apply to SafePBNF, SO for SafePBNF was comparable to HDA∗[P ,Astate], 0.11/0.17/0.24

on 4/8/16 threads.

58

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 6 8 10 12 14 16

Effi
ci

en
cy

#thread

HDA*[Z,Afeature]
HDA*[Z]

SafePBNF
HDA*[P,Astate]

HDA*[P]

(a) 15-puzzle: Efficiency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

SO

CO

Z4A4

b4
Z8

A8

b8 Z16
A16

b16

P4

P8
P16

(b) 15-puzzle: CO vs. SO

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 6 8 10 12 14 16

Effi
ci

en
cy

#thread

HDA*[Z,Afeature]
HDA*[P,Astate]

HDA*[Z]

(c) 24-puzzle: Efficiency

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.2 0.4 0.6 0.8 1

SO

CO

Z4A4

b4

Z8

A8

b8

Z16A16

b16

(d) 24-puzzle: CO vs. SO

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 6 8 10 12 14 16

Effi
ci

en
cy

#thread

HDA*[Z,Afeature]
HDA*[Z]

HDA*[P,Astate]
HDA*[HP]

(e) MSA: Efficiency

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0 0.2 0.4 0.6 0.8 1

SO

CO

Z4

A4

b4 H4
Z8

A8

b8

H8 Z16A16

b16

H16

(f) MSA: CO vs. SO

Figure 4-4: Efficiency (= speedup
#cores

), Communication Overhead (CO), and Search Overhead
(SO) for 15-puzzle (100 instances), 24-puzzle (100 instances), and MSA (60 instances) on
4/8/16 threads. The open list is implemented using a 2-level bucket for sliding-tiles, and
as a binary heap for MSA. In the CO vs SO plot, “A” = HDA∗[Z ,Afeature] (AZHDA*),
“Z” = HDA∗[Z] (ZHDA*), “b” = HDA∗[P ,Astate] (AHDA*), “P” = HDA∗[P], “H” =
HDA∗[Hyperplane], e.g., “Z8” is the CO and SO for Zobrist hashing on 8 threads. Error
bars show standard error of the mean.

59

HDA∗[Z ,Afeature] significantly outperformed HDA∗[Z], HDA∗[P ,Astate], and SafePBNF.

As shown in Figure 4-4b, although HDA∗[Z ,Afeature] had higher SO than HDA∗[Z] and

higher CO than HDA∗[P ,Astate], it achieved a balance between these overheads which re-

sulted in high overall efficiency. The tradeoff between CO and SO depends on each domain

and instance. By tuning the size of the abstract feature, we can choose a suitable tradeoff.

4.1.2 24-Puzzle

We generated a set of 100 random instances that could be solved by A* within 1000 sec-

onds. For the same reason as with the 15-puzzle experiments above in Section 1.1, these

are different from the 24-puzzle instances used in 2. We chose the hardest instances solv-

able given the memory limitation (128GB). The average runtime of sequential A* on these

instances was 219.0 seconds. The average solution length of our 24-puzzle instances was

92.9 (the average solution length in th epreious work by Korf and Felner (2002) was 100.8).

We used a disjoint pattern database heuristic (Korf & Felner, 2002). For the sliding-tile puz-

zle, the disjoint pattern database heuristic is much more efficient than Manhattan distance,

thus the average walltime of 24-puzzle with disjoint pattern database heuristic was much

faster than that of 15-puzzle with Manhattan distance heuristic, even though the 24-puzzle

search space is much larger than the 15-puzzle search space. Figure 4-2d shows the fea-

ture projections we used for 24-puzzle. For HDA∗[Z] and HDA∗[P ,Astate], we used same

configurations as in Section 2. The abstraction used by SafePBNF ignores the numbers on

all of the tiles except tiles 1,2,3,4, and 5 (we tried (1) ignoring all tiles except blank and

tiles 1-2, (2) ignoring all tiles except blank and tiles 1-3, (3) ignoring all tiles except blank

and tiles 1-4, (4) ignoring all tiles except tiles 1-3, (5) ignoring all tiles except tiles 1-4, (6)

ignoring all tiles except tiles 1-5, and chose (6), the best performer).

Figure 4-4c shows the efficiency of each method. As with the 15-puzzle, HDA∗[Z ,Afeature]

significantly outperformed HDA∗[Z] and HDA∗[P ,Astate], and Figure 4-4d shows that as

with the 15-puzzle, HDA∗[Z] and HDA∗[P ,Astate] succeed in mitigating only one of the

overheads (SO or CO). In contrast, HDA∗[Z ,Afeature] outperformed both HDA∗[Z] and

60

HDA∗[P ,Astate] as its SO was comparable to that of HDA∗[Z] while its CO was roughly

equal to that of HDA∗[P ,Astate].

4.1.3 Multiple Sequence Alignment

Multiple Sequence Alignment (MSA) is the problem of finding a minimum-cost alignment

of a set of DNA or amino acid sequences by inserting gaps in each sequence. MSA can

be solved by finding the min-cost path between corners in a n-dimensional grid, where

each dimension corresponds to the position of each sequence. We used 60 benchmark in-

stances, consisting of 10 actual amino acid sequences from BAliBASE 3.0 (Thompson,

Koehl, Ripp, & Poch, 2005), and 50 randomly generated instances. The BAliBASE in-

stances we used are: BB12021, BB12022, BB12036, BBS11010, BBS11026, BBS11035,

BBS11037, BBS12016, BBS12023, BBS12032. We generated random instances by 1. se-

lect number of sequences n from 4 to 9 uniformly randomly, 2. For each sequence select a

number of acids l from 5000/n ∗ 0.9 < l < 5000/n ∗ 1.1, 3. choose each acid uniformly

random from 20 acids. Edge costs are based on the PAM250 matrix score with gap penalty

8 (Pearson, 1990). Since there was no significant difference between the behavior of HDA*

among actual and random instances, we report the average of all 60 instances. We used the

pairwise sequence alignment heuristic (Korf, Zhang, Thayer, & Hohwald, 2005).

The features for Zobrist hashing and AZH were the positions of each sequence. For

AZH, we grouped 4 positions per row into an abstract feature. Thus, with n sequences,

nodes in the n-dimensional hypercube with edge length l share the same hash value. The

abstraction used by HDA∗[P ,Astate] only considers the position of the longest sequence and

ignores the others. We chose this abstraction for HDA∗[P ,Astate] as it performed the best

among (1) only considering the position of the longest sequence, (2) only considering the

two longest sequences, and (3) only considering the three longest sequences. We also eval-

uated the performance of Hyperplane Work Distribution (Kobayashi et al., 2011). HDA∗[Z]

suffers from node reexpansion in non-unit cost domains such as MSA. Hyperplane work

distribution seeks to reduce node reexpansions by mapping the n-dimension grid to hyper-

61

planes (denoted as HDA∗[Hyperplane]). For HDA∗[Hyperplane], we determined the plane

thickness d using the tuning method by Kobayashi et al. (2011) where λ = 0.003, which

yielded the best performance among 0.0003, 0.003, 0.03, and 0.3.

Figure 4-4e compares the efficiency of each method, and Figure 4-4f shows the CO and

SO. HDA∗[Z ,Afeature] outperformed the other methods. With 4 or 8 threads, HDA∗[Z ,Afeature]

had smaller SO than HDA∗[Z]. This is because like HDA∗[Hyperplane], HDA∗[Z ,Afeature]

reduced the amount of duplicated nodes in some domains compared to HDA∗[Z]. Our

MSA solver expands 300,000 nodes/second, which is relatively slow compared to, e.g.,

our 24-puzzle solver, which expands 1,400,000 node/sec. When node expansions are

slow, the relative importance of CO decreases, and SO has a more significant impact

on performance in MSA than in the 15/24-Puzzles. Thus, HDA∗[P ,Astate], which in-

curs higher SO, did not perform well compared to HDA∗[Z]. HDA∗[Hyperplane] did not

perform well, but it was designed for large-scale, distributed search, and we observed

HDA∗[Hyperplane] to be more efficient on difficult instances than on easier instances –

it is included in this evaluation only to provide another point of reference for evaluating

HDA∗[Z] and HDA∗[Z ,Afeature].

4.1.4 Node Expansion Order of HDA∗[Z ,Afeature]

In Section 1.4, in order to see why search overhead occurs in HDA* and PBNF, we ana-

lyzed how the node expansion order of parallel search diverges from that of sequential A*.

Figure 4-5 shows the expansion order of HDA∗[Z ,Afeature] on a difficult instance (HDA∗[Z]

and HDA∗[P ,Astate] are included for comparison). HDA∗[Z ,Afeature] has a bigger band

effect than HDA∗[Z], but smaller than that of HDA∗[P ,Astate]. The average divergence of

nodes for difficult instances are HDA∗[Z]: d̄ = 10330.6, HDA∗[P ,Astate]: d̄ = 245818,

HDA∗[Z ,Afeature]: d̄ = 76932.2. Note that although the band effect of HDA∗[Z ,Afeature]

in Figure 4-5a appears to be as large as the band effect of HDA∗[P ,Astate] in Figure 3-

3b, the actual divergence score d̄ is significantly higher on HDA∗[P ,Astate] (d̄ = 245818)

than on HDA∗[Z ,Afeature] (d̄ = 76932.2) because HDA∗[P ,Astate] expanded more nodes

62

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 0

 5
00

00
0

 1
e+

06

 1
.5

e+
06

 2
e+

06

 2
.5

e+
06

 3
e+

06

 3
.5

e+
06

 4
e+

06

 4
.5

e+
06

 5
e+

06

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(a) HDA∗[Z ,Afeature] on a diffi-
cult instance with 8 threads.

 0
 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06
 3e+06

 3.5e+06
 4e+06

 4.5e+06
 5e+06

 0

 5
00

00
0

 1
e+

06

 1
.5

e+
06

 2
e+

06

 2
.5

e+
06

 3
e+

06

 3
.5

e+
06

 4
e+

06

 4
.5

e+
06

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(b) HDA∗[Z] on a difficult in-
stance with 8 threads (copy of
Figure 3-3a).

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 0

 1
e+

06

 2
e+

06

 3
e+

06

 4
e+

06

 5
e+

06

 6
e+

06

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

(c) HDA∗[P ,Astate] on a difficult
instance with 8 threads (copy of
Figure 3-3b).

 0
 5000

 10000
 15000
 20000
 25000
 30000

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8

Strict Order
Goal

 0
 5000

 10000
 15000
 20000
 25000
 30000

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8

Strict Order
Goal

 0
 5000

 10000
 15000
 20000
 25000
 30000

 0
 2

00
0

 4
00

0
 6

00
0

 8
00

0
 1

00
00

 1
20

00
 1

40
00

A
*

ex
pa

ns
io

n
or

de
r

parallel expansion order

Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7
Thread 8

Strict Order
Goal

Figure 4-5: Comparison of HDA∗[Z ,Afeature] node expansion order vs. sequential A* node
expansion order on a difficult instance of the 15-puzzle with 8 threads. The average
node expansion order divergence scores for difficult instances are HDA∗[Z]: d̄ = 10330.6,
HDA∗[P ,Astate]: d̄ = 245818, HDA∗[Z ,Afeature]: d̄ = 76932.2. AZHDA has a big-
ger band effect than HDA∗[Z], but smaller than HDA∗[P ,Astate]. Although the band of
HDA∗[Z ,Afeature] appears to be as large as HDA∗[P ,Astate], the actual divergence score d̄
is higher on HDA∗[P ,Astate] as HDA∗[P ,Astate] expands more nodes.

(>5,000,000 nodes) than HDA∗[Z ,Afeature] (>4,500,000 nodes), HDA∗[P ,Astate] has sig-

nificantly larger divergence than HDA∗[Z ,Afeature].

4.2 Automated, Domain Independent Abstract Feature Gen-

eration

In Section 1, we evaluated hand-crafted, domain-specific feature projection functions for

instances of the HDA* framework (HDA∗[Z], HDA∗[P], HDA∗[P ,Astate], HDA∗[Z ,Afeature]),

and showed that AZH outperformed previous methods. Next, we turn our focus to fully au-

tomated, domain-independent methods for generating feature projection functions which

can be used when a formal model of a domain (such as PDDL/SAS+ for classical plan-

ning) is available.

63

From now on, we discuss domain-independent methods for work distribution. Table

4.1 summarizes the previously proposed methods and their abbreviations.

Table 4.1: Comparison of previous automated domain-independent feature generation
methods for HDA*. CO: communication overhead, SO: search overhead, “optimized”:
the method explicitly optimizes the overhead (approximately). “ad hoc”: the method seeks
to mitigate the overhead but without an explicit objective function. “not addressed”: the
method does not address the overhead.

abbreviation method CO SO
FAZHDA* HDA∗[Z ,Afeature/DTGfluency] ad hoc ad hoc

(Sec. 2.2) (Jinnai & Fukunaga, 2016b)
GAZHDA* HDA∗[Z ,Afeature/DTGgreedy] ad hoc ad hoc

(Sec. 2.1) (Jinnai & Fukunaga, 2016b)
OZHDA* HDA∗[Zoperator] ad hoc ad hoc

(Sec. 6) (Jinnai & Fukunaga, 2016b)
DAHDA* HDA∗[Z ,Astate/SDDdynamic] optimized not

(Sec. 7, Appendix A) (Jinnai & Fukunaga, 2016b) addressed
AHDA* HDA∗[Z ,Astate/SDD] optimized not

(Sec. 7) (Burns et al., 2010) addressed
ZHDA* HDA∗[Z] not optimized

(Sec. 6) (?) addressed

For HDA∗[Z], automated domain-independent feature generation for classical planning

problems represented in the SAS+ representation (Bäckström & Nebel, 1995) is straight-

forward (Kishimoto et al., 2013). For each possible assignment of value k to variable vi in a

SAS+ representation, e.g., vi = k, there is a binary proposition xi,k (i.e., the corresponding

STRIPS propositional representation). Each such proposition xi,k is a feature to which a

randomly generated bit string is assigned, and the Zobrist hash value of the state can be

computed by xor’ing the propositions that describe a state, as in Equation 2.1.

For AHDA*, the abstract representation of the state space can be generated by ignor-

ing some of the features (SAS+ variables) and using the rest of the features to represent

the abstraction. Burns et al. used the greedy abstraction algorithm by Zhou and Hansen

(2006b) to select the subset of features, which we refer to as SDD abstraction. It adds one

atom group to the abstract graph at a time, choosing the atom group which minimizes the

maximum out-degree of the abstract graph, until the graph size (number of abstract nodes)

64

reaches the threshold given by a parameter. As we saw in Section 1, the hashing strategy for

abstract state has little effect on the performance. We used the implementation of AHDA*

with Zobrist hashing and SDD abstraction (HDA∗[Z ,Astate/SDD]).

For AZHDA* (HDA∗[Z ,Afeature]), the feature projection function which generates ab-

stract features from raw features plays a critical role in determining the performance of

AZHDA*, because AZHDA* relies on the feature projection in order to reduce commu-

nications overhead. In this section, we discuss two methods to automatically generate

the feature projection function for AZH. Greedy abstract feature generation (GreedyAFG),

which partitions each domain transition graph (DTG) into 2 abstract features, and fluency-

based abstract feature generation (FluencyAFG), an extension of GreedyAFG which filters

the DTGs to partition according to a fluency-based criterion. GreedyAFG and FluencyAFG

seek to generate efficient feature projection functions without an explicit model of what to

optimize. Further details on GreedyAFG and FluencyAFG can be found in our previous

conference paper (Jinnai & Fukunaga, 2016b).

4.2.1 Greedy Abstract Feature Generation (GAZHDA*)

Greedy abstract feature generation (GreedyAFG) is a simple, domain-independent abstract

feature generation method, which partitions each feature into 2 abstract features (Jinnai &

Fukunaga, 2016a). GreedyAFG first identifies atom groups (?) and its domain transition

graph (DTG). Atom group is a set of mutually exclusive propositions from which exactly

one will be true for each reachable state, e.g., the values of a SAS+ multi-valued variable

(Bäckström & Nebel, 1995). GreedyAFG maps each atom group X into 2 abstract features

S1 and S2, based on X’s undirected DTG (nodes are values, edges are transitions), as

follows: (1) assign the minimal degree node (node with the least number of edges between

other nodes) to S1; (2) greedily add to S1 the unassigned node which shares the most edges

with nodes in S1; (3) while |S1| < |X|/2 repeat step 2; (4) assign all unassigned nodes

to S2. Due to the loop criterion in step 3, this procedure guarantees a perfectly balanced

bisection of the DTGs, i.e., |S2| ≤ |S1| ≤ |S2| + 1, so load balancing is minimized. A(xi)

65

in Equation 4.1 corresponds to the mapping from xi to S1, S2, and Ri is defined over S1 and

S2. We denote GAZHDA* as HDA∗[Z ,Afeature/DTGgreedy], as it applies feature abstraction

(FA) by cutting DTGs using GreedyAFG.

Algorithm 5: Greedy Abstract Feature Generation
Input: X: an atom group

1 Assign the minimal degree node (node with the least number of edges between other
nodes) to S1;

2 while |S1| < |G|/2 do
3 Greedily add to S1 the unassigned node which shares the most edges with nodes

in S1;
4 Assign all unassigned nodes to S2.;
5 Return (S1, S2);

4.2.2 Fluency-Dependent Abstract Feature Generation (FAZHDA*)

Since the hash value of the state changes if any abstract feature value changes, GreedyAFG

fails to prevent high CO when any abstract feature changes its value very frequently, e.g.,

in the blocks domain, every operator in the domain changes the value of the SAS+ vari-

able representing the state of the robot’s hand (handempty ↔ not-handempty). Fluency-

dependent abstract feature generation (FluencyAFG) overcomes this limitation (Jinnai &

Fukunaga, 2016b). The fluency of a variable v is the number of ground actions which

change the value of the v divided by the total number of ground actions in the problem.

By ignoring variables with high fluency, FluencyAFG was shown to be quite successful in

reducing CO and increasing speedup compared to GreedyAFG.

A problem with fluency is that in the AZHDA* framework, CO is associated with a

change in value of an abstract feature, not the feature itself. However, FluencyAFG is

based on the frequency with which features (not abstract features) change. This leads

FluencyAFG to exclude variables from consideration unnecessarily, making it difficult to

achieve good LB (in general, the more variables are excluded, the more difficult it becomes

to reduce LB). Figure 4-6 shows how fluency-based filtering is applied to the blocks domain.

The process of fluency-based filtering which ignores a subset of features can be described as

66

an instance of abstraction. Therefore, we denote FAZHDA* as HDA∗[Z ,Afeature/DTGfluency],

as it applies fluency-based abstraction, and then GAZHDA*.

holding(a)

on(a,b)

ontable(a)
handempty

not
handempty

holding(b)

on(b,a)

ontable(b)

fluency(x0) = 1.0 fluency(x1) = 0.5 fluency(x2) = 0.5

(a) GreedyAFG

holding(a)

on(a,b)

ontable(a)
handempty

not
handempty

holding(b)

on(b,a)

ontable(b)

fluency(x0) = 1.0 fluency(x1) = 0.5 fluency(x2) = 0.5

(b) FluencyAFG

Figure 4-6: Greedy abstract feature generation (GreedyAFG) and Fluency-dependent ab-
stract feature generation (FluencyAFG) applied to blocksworld domain. The hash value
for a state s = (x0, x1, x2) is given by AZ(s) = R[A(x0)] xor R[A(x1)] xor R[A(x2)].
Grey squares are abstract features A generated by GreedyAFG, so all propositions in
the same square have same hash value (e.g. R[A(holding(a))] = R[A(ontable(a))]).
fluency(x0) = 1 since all actions in the blocks world domain change its value. In this
case, any abstract features based on the other variables are rendered useless, as all actions
change x0 and thus change the state’s hash value. In this example, Fluency-dependent
AFG will filter x0 before calling GreedyAFG to compute abstract features based on the
remaining variables (thus AZ(s) = R[A(x1)] xor R[A(x2)]).

67

Chapter 5

A Graph Partitioning-Based Model for

Work Distribution

Although GAZHDA* and FAZHDA*, the domain-independent abstract feature generation

methods discussed in Section 2, seek to reduce communications overhead compared to

HDA∗[Z], they are not based on an explicit model which enables the prediction of the

actual communications overhead achieved during the search. Furthermore, the impact of

these methods on search overhead is completely unspecified, and thus, it is not possible

to predict the parallel efficiency achieved during the search. Previous work relied on ad

hoc, control parameter tuning in order to achieve good performance (Jinnai & Fukunaga,

2016b). In this section, we first show that a work distribution method can be modeled as a

partition of the search space graph, and that communication overhead and load balance can

be understood as the number of cut edges and balance of the partition, respectively. Using

this model, we introduce a metric, estimated efficiency, and we experimentally show that

the metric has a strong correlation to the actual efficiency. This leads to the GRAZHDA*

feature generation method described in Section 6.

69

5.1 Work Distribution as Graph Partitioning

Work distribution methods for hash-based parallel search distribute nodes by assigning a

process to each node in the state space. Our goal is to design a work distribution method

which maximizes efficiency by reducing CO, SO, and load balance (LB). In particular,

given a problem instance, we seek a principled method of quickly, automatically generating

a work distribution method (hash function) for HDA* for that particular problem instance.

We propose an approach which is based on optimizing a priori estimates of CO, SO, and

LB. In our approach, given a problem, we search a space of hash functions, using these

estimates of CO, SO, LB as the basis for a (cheap) evaluation function for this search in the

space of hash functions. To enable this, we first develop a model for estimating algorithm

performance based on the notion of a workload graph.

To guarantee the optimality of a solution, a parallel search method needs to expand a

goal node and all nodes with f < f ∗ (relevant nodes S). The workload distribution of a

parallel search can be modeled as a partitioning of an undirected, unit-cost workload graph

GW which is isomorphic to the relevant search space graph, i.e., nodes in GW correspond

to states in the search space with f < f ∗ and goal nodes, and edges in the workload graph

correspond to edges in the search space between nodes with f < f ∗ and goal nodes. The

distribution of nodes among p processors corresponds to a p-way partition of GW , where

nodes in partition Si are assigned to process pi.

The workload graph GW only includes nodes with f < f ∗, for the following reason.

We are ultimately trying to develop a method for quickly estimating SO, CO, and LB for

a work distribution scheme S without actually running S. In principle, if we knew exactly

the actual portion of the graph which is explored by HDA* with a particular partitioning

scheme, then this would allow us to accurately compute search efficiency. However, that

requires running HDA* until a solution is found, so this is impractical, and we need an

approximation of the actual explored nodes. The set of nodes with f < f ∗ is a reasonable

approximation to the nodes which are explored by HDA*, because these are the set of nodes

70

which must be expanded regardless of the hash function (partitioning method). Depending

on the hash function, some nodes with f ≥ f ∗ are expanded, but it is not possible to know

how many such nodes will be expanded without actually running HDA* with that hash

function. Therefore, although the workload graph underestimates the size of the actual

relevant search space, it is a reasonable approximation. While underestimating the relevant

search space is not ideal, the converse (considering states which are irrelevant to the actual

HDA*) is problematic. For example, if we consider the entire search space (i.e., including

all nodes with f ≥ f ∗) would be mapped to processors if the search algorithm continued

to execute until the space is exhausted, then HDA∗[P] (Section 1.1) successfully partitions

the space evenly, i.e., “perfect load balance”. However, as shown in Figure 4-3, HDA∗[P]

has the worst load balance in the actual experiment. This is because the distribution of

HDA∗[P] is highly biased in the search space so that the relevant state space (f ≤ f ∗),

which is a small fraction of the state space, is distributed unevenly. Considering only the

nodes with f < f ∗ allows us to capture this bias. This example also illustrates how using a

perfect hashing which balances the partitions for the entire search space does not does not

achieve good performance unless the partitions are also balanced with respect to portion of

the the search space which is actually explored by the search algorithm.

Given a partitioning of GW , LB and CO can be estimated directly from the structure

of the graph, without having to run HDA* and measure LB and CO experimentally, i.e., it

is possible to predict and analyze the efficiency of a workload distribution method without

actually executing HDA*. Therefore, although it is necessary to run A* or HDA* once to

generate a workload graph,1 we can subsequently compare the LB and CO of many parti-

tioning methods without re-running HDA* for each partitioning method. LB corresponds

to load balance of the partitions and CO is the number of edges between partitions over the

1. Hence, this is not yet a practical method for automatic hash function generation – a further approximation
of this model which does not require generating the workload graph, and yields a practical method is
described in Section 6.

71

number of total edges, i.e.,

CO =

∑p
i

∑p
j>i E(Si, Sj)∑p

i

∑p
j≥i E(Si, Sj)

, LB =
|Smax|

mean|Si|
, (5.1)

where |Si| is the number of nodes in partition Si, E(Si, Sj) is the number of edges

between Si and Sj , |Smax| is the maximum of |Si| over all processes, and mean|S| = |S|
p

.

Next, consider the relationship between SO and LB. It has been shown experimentally

that an inefficient LB leads to high SO, but to our knowledge, there has been no previous

analysis on how LB leads to SO in parallel best-first search. Assume that the number of

duplicate nodes is negligible2, and every process expands nodes at the same rate. Since

HDA* needs to expand all nodes in S, each process expands |Smax| nodes before HDA*

terminates. As a consequence, process pi expands |Smax| − |Si| nodes not in the relevant

set of nodes S. By definition, such irrelevant nodes are search overhead, and therefore, we

can express the overall search overhead as:

SO =

p∑
i

(|Smax| − |Si|)

= p(LB − 1). (5.2)

5.2 Parallel Efficiency and Graph Partitioning

In this section we develop a metric to estimate the walltime efficiency as a function of CO

and SO. First, we define time efficiency effactual :=
speedup
#cores

, where speedup = TN/T1, Tn

is the runtime on N cores and T1 the runtime on 1 core. Our ultimate goal is to maximize

effactual .

2. The number of duplicate node is closely related to LB and CO. If the order of node expansion is exactly
the same as A*, then the number of duplicate is 0. The duplicate nodes occur when LB is suboptimal
and the order of node expansion diverges from A*. The other cause of duplicate is CO. Even if the load
balance is optimal, the optimal path may be disturbed by communication latency and suboptimal path
may be discovered first, resulting in duplicate nodes. Therefore, optimizing LB and CO leads to reducing
duplicate nodes.

72

Communication Efficiency: Assume that the communication cost between every pair of

processors is identical. If tcom is the time spent sending nodes from one core to another3,

and tproc is the time spent processing nodes (including node generation and evaluation).

Hence communication efficiency, the degradation of efficiency by communication cost, is

effc =
1

1+cCO
, where c = tcom

tproc
.

Search Efficiency: Assuming all cores expand nodes at the same rate and that there are

no idle cores, HDA* with p processes expands np nodes in the same wall-clock time A*

requires to expand n nodes. Therefore, search efficiency, the degradation of efficiency by

search overhead, is effs =
1

1+SO
.

Using CO and LB (and SO from Equation 5.2), we can estimate the time efficiency

effactual . effactual is proportional to the product of communication and search efficiency:

effactual ∝ effc ·effs . There are overheads other than CO and SO such as hardware overhead

(i.e. memory bus contention) that affect performance (Burns et al., 2010; Kishimoto et al.,

2013), but we assume that CO and SO are the dominant factors in determining efficiency.

We define estimated efficiency effesti as effesti := effc · effs , and we use this metric to

estimate the actual performance (efficiency) of a work distribution method.

effesti = effc · effs =
1

(1 + cCO)(1 + SO)

=
1

(1 + cCO)(1 + p(LB − 1))
(5.3)

5.2.1 Experiment: effesti model vs. actual efficiency

To validate the usefulness of effesti , we evaluated the correlation of effesti and actual ef-

ficiency on the following HDA* variants discussed in Section 1 on domain-independent

planning.

• FAZHDA*: HDA∗[Z ,Afeature/DTGfluency], AZHDA* using fluency-based filtering (FluencyAFG).

3. In a multicore environment, the cost of “sending” a node from thread p1 to p2 is the time required to
obtain access to the incoming queue for p2 (via a successful try lock instruction).

73

• GAZHDA*: HDA∗[Z ,Afeature/DTGgreedy], AZHDA* using greedy abstract feature generation

(GreedyAFG).

• OZHDA*: HDA∗[Zoperator], Operator-based Zobrist hashing (Sec. 6).

• DAHDA*: HDA∗[Z ,Astate/SDDdynamic], AHDA* (Burns et al., 2010) with dynamic abstraction

size threshold (Appendix A).

• ZHDA*: HDA∗[Z], HDA* using Zobrist hashing (Kishimoto et al., 2013) (Sec. 6).

We implemented these HDA* variants on top of the Fast Downward classical planner

using the merge&shrink heuristic (Helmert, Haslum, Hoffmann, & Nissim, 2014) (abstrac-

tion size =1000). We parallelized Fast Downward using using MPICH3. We selected a

set of IPC benchmark instances that are difficult enough so that parallel performance dif-

ferences could be observed. We ran experiments on a cluster of 6 machines, each with an

8-core Intel Xeon E5410 2.33 GHz CPU with 16 GB RAM, and 1000Mbps Ethernet in-

terconnect. For FAZHDA*, we ignored 30% of the variables with the highest fluency as it

performed the best out of 10%, 20%, 30%, 50%, and 70%. DAHDA* uses at most 30% of

the total number of features in the problem instance (we tested 10%, 30%, 50%, and 70%

and found that 30% performed the best). We packed 100 states per MPI message in order

to reduce the number of messages (Romein et al., 1999).

Table 6.2 shows the speedups (time for 1 process / time for 48 processes). We included

the time for initializing work distribution methods (for all runs, the initializations com-

pleted in ≤ 1 second), but excluded the time for initializing the abstraction table for the

merge&shrink heuristic. From the measured runtimes, we can compute actual efficiency

effactual . Then, we calculated the performance estimated effesti as follows. We generated

the workload graph GW for each instance (i.e., enumerated all nodes with f ≤ f ∗ and edges

between these nodes), and calculated LB, CO, SO, and effesti using Eqs 5.1-5.3. Figure 5-

1, which compares estimated efficiency effesti vs. the actual measured efficiency effactual ,

indicates a strong correlation between effesti and effactual . Using least-square regression to

estimate the coefficient a in effactual = a · effesti , we obtained a = 0.86 with variance of

residuals 0.013. Note that a < 1.0 because there are other sources of overhead which not

74

accounted for in effesti , (e.g. memory bus contention) which affect performance (Burns

et al., 2010; Kishimoto et al., 2013).

Observation 5 The effesti metric for a partitioning scheme, which can be computed from

the workload distribution graph (without running HDA* using that partitioning scheme),

is strongly correlated with the actual measured efficiency effactual of HDA*.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ef
f

effesti

ac
tu
al

y=0.86x

Figure 5-1: Comparison of effesti and the actual experimental efficiency when communi-
cation cost c = 1.0 and the number of processes p = 48. The figure aggregates the data
points of FAZHDA*, GAZHDA*, OZHDA*, DAHDA*, and ZHDA* shown in Figure 6.1.
effactual = 0.86 · effesti with variance of residuals = 0.013 (least-squares regression).

75

Chapter 6

Graph Partitioning-Based Abstract

Feature Generation (GRAZHDA*)

A standard approach to workload balancing in parallel scientific computing is graph par-

titioning, where the workload is represented as a graph, and a partitioning of the graph

according to some objective (usually the cut-edge ratio metric) represents the allocation

of the workload among the processors (Hendrickson & Kolda, 2000; Buluc, Meyerhenke,

Safro, Sanders, & Schulz, 2015).

In Section 5, we showed that work distributions for parallel search on an implicit graph

can be modeled as partitions of a workload graph which is isomorphic to the search space,

and that this workload graph can be used to estimate the CO and LB of a work distribu-

tion. If we were given a workload graph, then by defining a graph cut objective such that

partitioning the nodes in the search space (with f ≤ f ∗) corresponds to maximizing the

efficiency, we would have a method of generating an optimal workload distribution. Un-

fortunately, this is impractical as the workload graph is an explicit representation of the

relevant state space graph, i.e., this a solution to the search problem itself!

However, a practical alternative is to apply graph partitioning to a graph which serves an

approximate, proxy for the actual state space graph. We propose GRaph partitioning-based

Abstract Zobrist HDA* (GRAZHDA*), which approximates the optimal graph partitioning-

77

based strategy by partitioning domain transition graphs (DTG). Given a classical planning

problem represented in SAS+, the domain transition graph (DTG) of a SAS+ variable X ,

DX(E, V), is a directed graph where vertices V corresponds to the possible values of a

variable X , edges E represent transitions among the values of X , and (v, v′) ∈ E iff there

is an operator (action) o with v ∈ del(o) and v′ ∈ add(o) (Jonsson & Bäckström, 1998).

Listing 6.1: Sliding-tile puzzle PDDL

(d e f i n e (domain s t r i p s −s l i d i n g − t i l e)

(: requirements : s t r i p s)

(: p r e d i c a t e s

(t i l e ? x) (p o s i t i o n ? x)

(a t ? t ? x ? y) (b l a n k ? x ? y)

(i n c ? p ? pp) (dec ? p ? pp))

(: a c t i o n move−up

: parameters (? omf ? px ? py ? by)

: p r e c o n d i t i o n (and

(t i l e ?omf) (p o s i t i o n ? px) (p o s i t i o n ? py) (p o s i t i o n ? by)

(dec ? by ? py) (b l a n k ? px ? by) (a t ? omf ? px ? py))

: e f f e c t (and (not (b l a n k ? px ? by)) (not (a t ?omf ? px ? py))

(b l a n k ? px ? py) (a t ?omf ? px ? by)))

(: a c t i o n move− l e f t

.

.

The DTGs for a problem provide a highly compressed representation which reflects the

structure of the search space, and is easily extracted automatically from the formal domain

description (e.g., PDDL/SAS+). We expect DTGs to be good proxies for the search space

because DTGs tend to be orthogonal to each other – otherwise the propositions of the

DTG is redundant (this is not always true as PDDL may contain dual representations, e.g.

sokoban).

GRAZHDA* partitions each DTG into two abstract features according to an objective

function. That is, each DTG is partitioned into two subsets S1 and S2. Projection A(x)

is defined on the value of the DTG, and returns 1 or 0 depending on whether S1 or S2

it is included in. Abstract Zobrist hashing is then applied using these abstract features

78

state space partitioned
by single DTG

states with
A(v1) = S1

states with
A(v1) = S2

states with
A(v2) = S1

states with
A(v2) = S2

state space partitioned by
multiple DTGs

states with
A(v1) = S1,
A(v2) = S2

state space partitioned
by single DTG

distribution of the states

states owned
by process 0

states owned
by process 0

states owned
by process 1

states owned
by process 1

Abstract
Feature

A(v1) = S1

DTG of v1: (at t1 ?x ?y)

Abstract
Feature

A(v1) = S2

Abstract
Feature

A(v2) = S2

Abstract
Feature

A(v2) = S1

S1 S2S1 S2

states with
A(v1) = S1,
A(v2) = S1

states with
A(v1) = S2,
A(v2) = S1

states with
A(v1) = S2,
A(v2) = S2

DTG of v2: (at t2 ?x ?y)

Figure 6-1: GRAZHDA* applied to 8 puzzle domain. The SAS+ variable v1 and v2 corre-
spond to the position of tile 1 and 2. The domain transition graphs (DTGs) of v1 and v2 are
shown in the top of the figure (e.g. v1 = {(at t1 x1 y1), (at t1 x1 y2), (at
t1 x1 y3),...}). GRAZHDA* partitions each DTG with given objective function to
generate abstract feature S1 and S2, and A(v1) = S1, S2. Thus, the hash value of abstract
feature R[A(v1)] corresponds to which partition v1 belongs to. As DTGs are compressed
representation of the state space graph, partitioning a DTG corresponds to partitioning a
state space graph. By xor’ing R[A(v1)], R[A(v2)], ..., the hash value AZ(s) represents for
each variable vi which partition it belongs to.

(random table R in Equation 4.1 is defined on S1 and S2). In GRAZHDA*, AZH uses

each partition of the DTG as an abstract feature, assigning a hash value to each abstract

feature (Figure 6-1). Since the AZH value of a state is the XOR of the hash values of

the abstract features (Equation 4.1), 2 nodes in the state space are in different partitions

if and only if they are partitioned in any of the DTGs. Therefore, GRAZHDA* generates

2n partitions from n DTGs, which are then projected to the p processors (by taking the

79

hash value modulo p, processor(s) = hashvalue(s) mod p).1 We denote GRAZHDA* as

HDA∗[Z ,Afeature/DTG], where DTG stands for DTG-partitioning.

6.1 Previous Methods and Their Relationship to GRAZHDA*

FAZHDA*

HDA*[Z, Afeature/DTGfluency]

Jinnai&Fukunaga 16

try min(CO)

Clustering

DTG-Partitioning

OZHDA*

HDA*[Zoperator]

Jinnai&Fukunaga 16

AHDA*

HDA*[Z, Astate/SDD]

Burns et al 10

DAHDA*

HDA*[Z, Astate/SDDdynamic]

Jinnai&Fukunaga 16

GRAZHDA* with clustering

AZHDA*
HDA*[Z, Afeature]

min(LB)

GRAZHDA*
HDA*[Z, Afeature/DTG]

GAZHDA*

HDA*[Z, Afeature/DTGgreedy]

Jinnai&Fukunaga 16

GRAZHDA*/sparsity

HDA*[Z, Afeature/DTGsparsity]

(Sec. 6.2.1)

ZHDA*
HDA*[Z]

Kishimoto et al 13

max(sparsity)

try min(CO) try min(CO)try min(CO)

Figure 6-2: Work distribution methods described as an instances of GRAZHDA* with clus-
tering. Previous methods can be seen as GRAZHDA* + clustering with suboptimal objec-
tive function. The arrows represent the relationship of methods. For example, FAZHDA*
applies fluency-based filtering to ignore some variables, and then applies GreedyAFG to
partition DTGs. This can be described as applying clustering, partitioning, and then Zo-
brist hashing. As such, all previous methods discussed in this thesis can be explained as
instances of GRAZHDA* (with clustering).

In this section we show that previously proposed methods for the HDA* framework

can be interpreted as instances of GRAZHDA*. First, we define a DTG-partitioning as

follows: given s = (v0, v1, ..., vn), a DTG-partitioning maps a state s to an abstract state

1. In HDA* the owner of a state is computed as processor(s) = hashvalue(s) mod p, so it is possible that
states with different hash values are assigned to the same thread. Also, while extremely unlikely, it is
theoretically possible that s and s′ may have the same hash value even if they have different abstract
features due to the randomized nature of Zobrist hashing (in all our HDA* variants, we detect such
collisions by always comparing the values stored in the hash table whenever hash keys point to a nonempty
hash table entry).

80

s′ = (A0[v0], A1[v1], ..., An[vn]), where Ai[vi] is defined by a graph partitioning on each

DTG while optimizing given objective function. DTG-partitioning corresponds to AF/DTG

for an abstraction strategy. Then, in order to model non-DTG based methods, we refer to all

other methods which map a state space to an abstract state space with or without objectives

a clustering. For example, by ignoring subset of the variables, we get an abstract state

s′ = (v0, ..., vm) where m < n. Clustering corresponds to any abstraction strategy other

than DTG-partitioning. Using this terminology, the relationship between GRAZHDA* and

previous methods is summarized in Figure 6-2.

First, HDA∗[Z], the original Zobrist-hashing based HDA* (?; Kishimoto et al., 2013),

corresponds to an extreme case where every node in DTG is assigned to a different partition

(for all Ai, Ai[vi] ̸= Ai[v
′
i] if vi ̸= v′i).

GAZHDA* (GreedyAFG) (Jinnai & Fukunaga, 2016a), described in Section 2.1 is in

fact applying DTG-partitioning whose objective function is to minimize LB as the primary

objective, with a secondary objective of (greedily) minimizing CO, as it tries to assign the

most connected node but does not optimize. Thus, GAZHDA* an instance of GRAZHDA*.

AHDA* (Burns et al., 2010) (Section 7), FAZHDA* (Jinnai & Fukunaga, 2016b) (Sec-

tion 2.2), OZHDA* (Jinnai & Fukunaga, 2016b) (Section 6), and DAHDA* (Jinnai &

Fukunaga, 2016b) (Section7), are instances of GRAZHDA* with clustering, which map

the state space graph to an abstract state space graph, and then apply DTG-partitioning

to the abstract state space graph so that the nodes mapped to the same abstract state are

guaranteed to be assigned to the same partition, so that there no communication overhead

is incurred when generating a node that is in the same abstract state as its parent.

AHDA* generates an abstract state space by ignoring some of the features (DTGs) in

the state representation and then it applies hashing to the abstract state space. Ignoring

part of the state representation can be interpreted as a clustering of nodes so that all of

the nodes in a cluster are allocated to the same processor. The problem with AHDA* is

the criteria used to determine which features to ignore (conversely, which features to take

into account). It minimizes the highest degree of the abstract nodes, as the abstraction

81

method used by AHDA* was originally proposed for duplicate detection of external search

(Zhou & Hansen, 2006b). However, this doe not correspond to a natural objective function

which optimizes parallel work distribution objective such as edge cut or load balancing.

Therefore, although the projection of AHDA* result in significantly reduced CO, it does

not explicitly try to optimize it; CO is reduced as a fortunate side-effect of generating

efficient abstract state space for external search. DAHDA* (Jinnai & Fukunaga, 2016b)

improves upon AHDA* by dynamically tuning the number of DTGs which are ignored

(see Appendix A), but the state projection mechanism is the same as AHDA*.

FAZHDA* is a variant of GAZHDA*, which, instead of using all the variables as

GAZHDA* does, FAZHDA* ignores some of the variables in the state based on their flu-

ency, which is defined as the number of ground actions which change the value of the

variable divided by the total number of ground actions in the problem. As we pointed out

above for AHDA*, ignoring variables can be described as a clustering. Although fluency-

based filtering is intended to reduce CO, ignoring high fluency variables is only a heuristic

which sometimes succeeds in reducing CO, but sometimes fails, since fluency is defined

on the frequency of the change of the feature (value), but the change of abstract feature is

what incurs CO. Even if the fluency of a variable is 1.0, the value may change within an

abstract feature, thus eliminating the DTG does not improve any CO whatsoever. Fluency-

based filtering only takes into account of the fluency of the variable, whereas GRAZHDA*

framework looks into each transition in the DTG to choose how to treat the variable.

OZHDA* clusters nodes connected with selected operators and applies Zobrist hashing,

so that the selected operator does not cost communication. The clustering of OZHDA* is

bottom-up, in the sense that state space nodes connected with selected operators are directly

clustered, instead of using SAS+ variables or DTGs. The problem with OZHDA* is that

the clustering is ad hoc and unbalanced – some of the nodes are clustered but the others

are not, and the choice of which nodes to cluster or not is not explicitly optimized. The

clustered nodes are then partitioned by assigning each node to a separate partition, as with

ZHDA* (see above), but this is dangerous, since OZHDA* ends up treating clustered nodes

82

and original nodes equally, without considering that the clustered nodes should have larger

edge cut costs than original single nodes. Thus, although the clustering done by OZHDA*

is intended to reduce CO, it comes at the price of load balance – the edge costs for the

(implicit) workload graph are not aggregated when the clusters are formed, so load balance

is being sacrificed without an explicit objective function controlling the tradeoff.

Thus, we have shown that all previous methods for work distribution in the HDA*

framework can be viewed as instances of GRAZHDA* using ad hoc criteria for clustering

and optimization.

6.2 Effective Objective Functions for GRAZHDA*

In the previous section, we showed that previous variants of HDA* can be seen as instances

of GRAZHDA* which partitioned the workload graph based on ad hoc criteria. However,

since the GRAZHDA* framework formulates workload distribution as a graph partitioning

problem, a natural idea is to design an objective function for the partitioning which directly

leads to a desired tradeoff between search and communication overheads, resulting in good

overall efficiency. Fortunately, a metric which can be used as the basis for such an objective

is available: effesti .

In Section 2.1, we showed that effesti , based on the workload is an effective predictor

for the actual efficiency of a work distribution strategy. In this section, we propose ap-

proximations to effesti which can be used as objective functions for the DTG partitioning

in GRAZHDA*.

In principle, in order to maximize the performance of GRAZHDA*, it is desirable to

have a function which approximates effesti as closely as possible. However, since GRAZHDA*

partitions the domain transition graph as opposed to the actual workload graph (which is

isomorphic to the search space graph), and the DTG is only an approximation to the actual

workload graph, a perfect approximation of effesti is not feasible. Fortunately, in practice,

it turns out that using a straightforward approximation of effesti as an objective function

83

for GRAZHDA* result in good performance when compared to previous work distribution

methods.

6.2.1 Sparsest Cut Objective Function (GRAZHDA*/sparsity)

One straightforward objective function which is clearly related to effesti is a sparsest cut

objective, which maximizes sparsity, defined as

sparsity :=

∏p
i |Si|∑p

i

∑p
j>i E(Si, Sj)

, (6.1)

where p is the number of partitions (= number of processors), |Si| is the number of

nodes in partition Si divided by the total number of nodes, E(Si, Sj) is the sum of edge

weights between partition Si and Sj . Consider the relationship between the sparsity of a

state space graph for a search problem and the effesti metric defined in the previous section.

By equations 5.3 and 5.1, sparsity simultaneously considers both LB and CO, as the nu-

merator
∏p

i |Si| corresponds to LB and the denominator
∑p

i

∑p
j>i E(Si, Sj) corresponds

to CO.

Sparsity is used as a metric for parallel workloads in computer networks (Leighton &

Rao, 1999; Jyothi, Singla, Godfrey, & Kolla, 2014), but to our knowledge this is the first

proposal to use sparsity in the context of parallel search of an implicit graph.

Figure 6-3 shows the sparsest cut of a DTG (for the variable representing package loca-

tion) in the standard logistics domain. Each edge in a DTG corresponds to a transition

of its value. Edge costs we represent the ratio of operators which corresponds to its tran-

sition over the total number of operators in the DTG. For example in logistics, each edge

corresponds to 2 operators, one in each direction ((drive-truck ?truck pos0 pos1) and (drive-

truck ?truck pos1 pos0), or (fly-airplane ?plane pos0 pos1) and (fly-airplane ?plane pos1 pos0)).

The total number of operator in the graph is 120, thus we for each edge is 2/120 = 1/60.

We use this to calculate sparsity (Equation 6.1). Maximizing sparsity results in cutting

only 1 edge (Figure 6-3): it cuts the graph with |S1| · |S2| = 10/16 · 6/16, and edge cuts

E(S1, S2) = 1·we, thus sparsity = |S1|·|S2|
E(S1,S2)

= 26.72, whereas the partition by GreedyAFG

84

results in cutting 21 edges (sparsity = 0.71). The problem with GreedyAFG is that it im-

poses a hard constraint requiring the partition to be perfectly balanced. While this optimizes

load balance, locality (i.e., the number of cut edges) is sacrificed. GRAZHDA*/sparsity

takes into account both load balance and CO without the hard constraint of bisection, re-

sulting in a partitioning which preserves more locality.

GreedyAFG sparsity

Figure 6-3: GRAZHDA*/sparsity and Greedy abstract feature generation (GreedyAFG)
applied to DTG on logistics domain of 2 cities with 10/6 locations. Each node in the
domain transition graph above corresponds to a location of the package (at obj12 ?loc).
GreedyAFG potentially cuts many edges because it requires the best load balance possible
for the cut (bisection), while GRAZHDA*/sparsity takes into account of the number of
edge cut as an objective function.

6.2.2 Experiment: Validating the Relationship between Sparsity and effesti

To validate the correlation between sparsity and estimated efficiency effesti , we used the

METIS (approximate) graph partitioning package (Karypis & Kumar, 1998) to partition

modified versions of the search spaces of the instances used in Fig. 6-4a. We partitioned

each instance 3 times, where each run had a different set of random, artificial constraints

added to the instance (we chose 50% of the nodes randomly and forced METIS to distribute

them equally among the partitions – these constraints degrade the achievable sparsity).

Figure 6-4b compares sparsity vs. effesti on partitions generated by METIS with random

constraints. There is a clear correlation between sparsity and effesti . Thus, partitioning a

85

graph to maximize sparsity should maximize the effesti objective, which should in turn

maximize actual walltime efficiency.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Blocks8-0

Blocks8-1

Elevators08-3

Gripper6

M
iconic8-1

Nomprime3

Parcprint11-4

Scanalyze08-4

Sokoban08-10

W
oodwrk11-1

ef
f

Logistics00-5-0

Openstacks08-10

Psrsmall10

Truck1

es
ti

GRAZHDA*/sparsity
FAZHDA*
GAZHDA*

OZHDA*
DAHDA*

ZHDA*
IdealApprox

(a) Comparison of effesti for various work distribution methods

 0.84
 0.86
 0.88

 0.9
 0.92
 0.94
 0.96
 0.98

 1

 10 100

ef
f

sparsity

es
ti

(b) sparsity vs. effesti

Figure 6-4: Figure 6-4a compares effesti when communication cost c = 1.0, the number of
processes p = 48. Bold indicates that GRAZHDA*/sparsity has the best effesti (except for
IdealApprox). Figure 6-4b compares sparsity vs. effesti . For each instance, we generated
3 different partitions using METIS with load balancing constraints which force METIS to
balance randomly selected nodes, to see how degraded sparsity affects effesti . There was
no partition with effesti < 0.84.

6.2.3 Partitioning the DTGs

Given an objective function such as sparsity, GRAZHDA* partitions each DTG into two

abstract features, as described above in Section 6. Since each domain transition graph

typically only has fewer than 10 nodes, we compute the optimal partition for both objective

functions with a straightforward depth-first branch-and-bound procedure. It is possible that

86

branch-and-bound becomes impractical in case a domain has very large DTGs, or we may

develop a more complicated objective function for partitioning the DTGs. In such cases, we

can use heuristic partitioning methods such as the FM algorithm (Fiduccia & Mattheyses,

1982). However, to date, branch-and-bound has been sufficient – in all of the standard

IPC benchmark domains we evaluated, the abstract feature generation procedure (which

includes partitioning all of the DTGs) take less than 4 seconds on every instance we tested

(most instances take < 1 second).

6.3 Evaluation of Automated, Domain-Independent Work

Distribution Methods

In addition to the methods in Section 2.1, we evaluated the performance of GRAZHDA*/sparsity.

We used CGL-B (CausalGraph-Goal-Level&Bisimulation) merge&shrink heuristic (Helmert

et al., 2014), which is more efficient and recently proposed than LFPA merge&shrink

(Helmert, Haslum, & Hoffmann, 2007) used in a previous conference paper which eval-

uated GAZHDA* and FAZHDA* (Jinnai & Fukunaga, 2016b). For example in Block10-1,

CGL-B expands 11,065,451 nodes while LFPA 51,781,104 expands nodes. We set the ab-

straction size for merge&shrink to 1000. The choice of heuristic affects the behavior of

parallel search if the heuristics have different node expansion rate, because it affects the

relative cost of communication. As CGL-B and LFPA have roughly the same node ex-

pansion rate, we did not observe a significant difference on the effect of work distribution

methods. Therefore, we show the result using CGL-B because it runs faster on sequential

A*. We discuss the effect of node expansion rate in Section 3.4. We did not apply fluency-

based filtering (Section 2.2) and used all DTGs in GRAZHDA*/sparsity because it did not

improve the performance.

Figure 6-4a shows effesti for the various work distribution methods, including GRAZHDA*

(see Section 2.1 for experimental setup and list of methods included in comparison). To

evaluate how these methods compare to an ideal (but impractical) model which actually

87

Table 6.1: Comparison of effactual and effesti on a commodity cluster with 6 nodes, 48 pro-
cesses. effesti (effactual) with bold font indicates the method has the best effesti (effactual). In-
stance name with bold indicates that the best effesti method has the best effactual . Speedup,
CO, SO on experimental run are shown in Table 6.2.

Instance A* GRAZHDA*/ FAZHDA*
sparsity

[Z ,Afeauture/DTGsparsity] [Z ,Afeauture/DTGfluency]
time expd effactual effesti effactual effesti

Blocks10-0 129.29 11065451 0.57 0.57 0.54 0.43
Blocks11-1 813.86 52736900 0.71 0.53 0.71 0.50
Elevators08-5 165.22 7620122 0.34 0.51 0.26 0.49
Elevators08-6 453.21 18632725 0.45 0.50 0.38 0.36
Gripper8 517.41 50068801 0.56 0.60 0.57 0.63
Logistics00-10-1 559.45 38720710 0.94 0.70 0.91 0.61
Miconic11-0 232.07 12704945 0.87 0.95 0.88 0.91
Miconic11-2 262.01 14188388 0.94 0.97 0.93 0.92
NoMprime5 309.14 4160871 0.50 0.58 0.48 0.53
NoMystery10 179.52 1372207 0.72 0.61 0.48 0.75
Openstacks08-19 282.45 15116713 0.51 0.59 0.42 0.58
Openstacks08-21 554.63 19901601 0.53 0.65 0.52 0.62
Parcprinter11-11 307.19 6587422 0.42 0.54 0.27 0.49
Parking11-5 237.05 2940453 0.62 0.55 0.62 0.54
Pegsol11-18 801.37 106473019 0.44 0.72 0.44 0.71
PipesNoTk10 157.31 2991859 0.33 0.52 0.33 0.49
PipesTk12 321.55 15990349 0.70 0.66 0.83 0.65
PipesTk17 356.14 18046744 0.92 0.65 0.94 0.63
Rovers6 1042.69 36787877 0.86 0.79 0.84 0.72
Scanalyzer08-6 195.49 10202667 0.69 0.92 0.63 0.86
Scanalyzer11-6 152.92 6404098 0.91 0.78 0.57 0.63
Average 382.38 21557805 0.64 0.62 0.60 0.61

Instance GAZHDA* OZHDA* DAHDA* ZHDA*
[Z ,Afeauture/DTGgreedy] [Zoperator] [Z ,Astate/SDDdynamic] [Z]
effactual effesti effactual effesti effactual effesti effactual effesti

Blocks10-0 0.45 0.44 0.32 0.37 0.52 0.47 0.31 0.48
Blocks11-1 0.61 0.48 0.61 0.47 0.52 0.43 0.58 0.48
Elevators08-5 0.61 0.58 0.46 0.64 0.57 0.51 0.57 0.47
Elevators08-6 0.72 0.76 0.68 0.56 0.32 0.39 0.38 0.49
Gripper8 0.46 0.50 0.52 0.44 0.45 0.45 0.45 0.47
Logistics00-10-1 0.24 0.42 0.24 0.43 0.36 0.53 0.34 0.48
Miconic11-0 0.27 0.53 0.79 0.96 0.96 0.91 0.15 0.48
Miconic11-2 0.18 0.37 0.77 0.90 0.70 0.81 0.31 0.48
NoMprime5 0.39 0.48 0.35 0.51 0.38 0.49 0.35 0.47
NoMystery10 0.40 0.66 0.45 0.50 0.59 0.60 0.45 0.49
Openstacks08-19 0.46 0.58 0.36 0.55 0.51 0.66 0.54 0.47
Openstacks08-21 0.53 0.65 0.82 0.49 0.56 0.68 0.81 0.51
Parcprinter11-11 0.35 0.40 0.33 0.34 0.15 0.15 0.40 0.48
Parking11-5 0.59 0.49 0.56 0.46 0.60 0.59 0.56 0.47
Pegsol11-18 0.34 0.53 0.55 0.71 0.46 0.70 0.35 0.47
PipesNoTk10 0.32 0.50 0.32 0.48 0.32 0.48 0.07 0.48
PipesTk12 0.41 0.48 0.45 0.49 0.52 0.57 0.41 0.48
PipesTk17 0.56 0.50 0.60 0.52 0.65 0.60 0.55 0.49
Rovers6 0.70 0.61 0.85 0.71 0.53 0.73 0.63 0.53
Scanalyzer08-6 0.42 0.54 0.49 0.58 0.44 0.51 0.34 0.48
Scanalyzer11-6 0.34 0.41 0.81 0.68 0.41 0.44 0.42 0.48
Average 0.45 0.51 0.54 0.53 0.50 0.47 0.43 0.49

88

Table 6.2: Comparison of average speedups, communication/search overhead (CO, SO) on
10 runs on a commodity cluster with 6 nodes, 48 processes using merge&shrink heuristic.
The results with standard deviation are shown in appendix.

Instance A* GRAZHDA*/ FAZHDA*
sparsity

[Z ,Afeauture/DTGsparsity] [Z ,Afeauture/DTGfluency]
expd time speedup CO SO speedup CO SO

Blocks10-0 129.29 11065451 27.17 0.28 0.38 26.02 0.70 0.35
Blocks11-1 813.86 52736900 34.25 0.66 0.15 34.25 0.66 0.15
Elevators08-5 165.22 7620122 16.43 0.47 0.33 12.34 0.32 0.51
Elevators08-6 453.21 18632725 21.47 0.49 0.37 18.05 0.52 0.81
Gripper8 517.41 50068801 26.67 0.50 0.15 27.45 0.43 0.10
Logistics00-10-1 559.45 38720710 45.16 0.43 0.01 43.85 0.57 0.02
Miconic11-0 232.07 12704945 41.97 0.01 0.07 42.43 0.01 0.06
Miconic11-2 262.01 14188388 45.26 0.01 0.05 44.87 0.01 0.05
NoMprime5 309.14 4160871 23.95 0.80 -0.04 22.87 0.79 -0.05
NoMystery10 179.52 1372207 34.80 0.51 0.12 22.99 0.24 -0.44
Openstacks08-19 282.45 15116713 24.67 0.27 0.34 20.00 0.24 0.37
Openstacks08-21 554.63 19901601 25.23 0.17 0.35 24.97 0.15 0.35
Parcprinter11-11 307.19 6587422 20.26 0.26 0.55 13.08 0.26 0.61
Parking11-5 237.05 2940453 29.75 0.40 0.34 29.67 0.63 0.11
Pegsol11-18 801.37 106473019 21.03 0.39 0.02 20.97 0.39 0.00
PipesNoTk10 157.31 2991859 15.73 0.98 0.01 15.64 0.98 0.01
PipesTk12 321.55 15990349 33.78 0.46 0.05 39.65 0.46 0.03
PipesTk17 356.14 18046744 43.92 0.54 0.01 45.03 0.54 0.01
Rovers6 1042.69 36787877 41.17 0.15 0.14 40.48 0.15 0.17
Scanalyzer08-6 195.49 10202667 32.92 0.12 0.01 30.31 0.12 0.01
Scanalyzer11-6 152.92 6404098 43.83 0.16 0.13 27.31 0.18 0.34
Average 382.38 21557805 30.92 0.38 0.17 28.68 0.40 0.17
Total walltime 8029.97 452713922 277.91 301.38

Instance GAZHDA* OZHDA* DAHDA* ZHDA*
[Z ,Afeauture/DTGgreedy] [Zoperator] [Z ,Astate/SDDdynamic] [Z]
speedup CO SO speedup CO SO speedup CO SO speedup CO SO

Blocks10-0 21.81 0.99 0.12 15.47 0.98 0.34 25.11 0.88 0.08 14.93 0.98 0.30
Blocks11-1 29.20 0.99 0.03 29.20 0.99 0.03 24.88 0.91 0.21 27.98 0.98 0.07
Elevators08-5 29.35 0.65 -0.00 21.86 0.09 0.44 27.59 0.83 -0.03 27.54 0.98 -0.03
Elevators08-6 34.52 0.24 -0.09 32.70 0.41 0.22 15.28 0.88 0.31 18.19 0.96 0.06
Gripper8 21.86 0.81 0.06 24.77 0.98 0.14 21.80 0.98 0.08 21.66 0.98 0.08
Logistics00-10-1 11.68 0.85 0.25 11.68 0.85 0.25 17.52 0.84 0.00 16.09 0.99 0.00
Miconic11-0 13.15 0.53 0.24 37.86 0.02 0.02 46.05 0.01 0.08 7.40 0.96 0.13
Miconic11-2 8.53 0.53 0.74 36.86 0.02 0.07 33.81 0.01 0.18 14.67 0.96 0.05
NoMprime5 18.55 0.95 -0.06 16.66 0.94 0.00 18.46 0.90 -0.05 16.63 0.98 -0.02
NoMystery10 18.98 0.42 -0.07 21.61 0.74 0.11 28.41 0.60 -0.07 21.68 0.99 -0.07
Openstacks08-19 22.14 0.38 0.21 17.11 0.34 0.32 24.54 0.24 0.18 25.99 0.99 -0.05
Openstacks08-21 25.67 0.15 0.31 39.34 0.92 0.05 26.72 0.13 0.28 39.06 0.92 -0.00
Parcprinter11-11 16.85 0.74 0.41 15.98 0.82 0.56 7.00 0.19 4.38 19.15 0.97 0.08
Parking11-5 28.43 0.98 0.02 26.76 0.97 0.07 28.84 0.52 0.07 27.09 0.98 0.04
Pegsol11-18 16.22 0.77 0.05 26.17 0.34 -0.03 22.16 0.34 -0.01 16.97 0.98 0.03
PipesNoTk10 15.58 0.98 0.01 15.22 0.98 0.02 15.58 0.98 0.01 3.22 0.98 -0.44
PipesTk12 19.84 0.99 0.01 21.40 0.88 0.04 25.12 0.67 0.00 19.78 0.98 0.00
PipesTk17 26.64 0.98 0.00 28.82 0.88 0.00 31.16 0.60 0.01 26.27 0.98 0.00
Rovers6 33.49 0.56 0.01 41.00 0.31 0.03 25.48 0.05 0.26 30.01 0.76 0.00
Scanalyzer08-6 20.28 0.77 0.01 23.70 0.66 0.01 21.23 0.94 0.00 16.54 0.98 0.01
Scanalyzer11-6 16.36 0.65 0.49 38.82 0.30 0.09 19.51 0.50 0.46 20.36 0.98 0.05
Average 21.39 0.71 0.13 25.86 0.64 0.13 24.11 0.57 0.31 20.53 0.96 0.01
Total walltime 398.75 331.18 377.86 433.23

89

applies graph partitioning to the entire search space (instead of partitioning DTG as done

by GRAZHDA*), we also evaluated IdealApprox, a model which partitions the entire state

space graph using the METIS (approximate) graph partitioner (Karypis & Kumar, 1998).

IdealApprox first enumerates a graph containing all nodes with f ≤ f ∗ and edges between

these nodes and ran METIS with the sparsity objective (Equation 6.1) to generate the par-

tition for the work distribution. Generating the input graph for METIS takes an enormous

amount of time (much longer than the search itself), so IdealApprox is clearly an impracti-

cal model, but it provides a useful approximation for an ideal work distribution which can

be used to evaluate practical methods.

Not surprisingly, IdealApprox has the highest effesti , but among all of the practical

methods, GRAZHDA*/sparsity has the highest effesti overall. As we saw in Section 2.1 that

effesti is a good estimate of actual efficiency, the result suggest that GRAZHDA*/sparsity

outperforms other methods. In fact, as shown in Table 6.1 and 6.2, GRAZHDA*/sparsity

achieved a good balance between CO and SO and had the highest actual speedup overall,

significantly outperforming all other previous methods. Note that as IdealApprox is only

an approximation of the sparsest-cut, other methods can sometimes achieve better effesti .

6.3.1 The effect of the number of cores on speedup

Figure 6-5 shows the speedup of the algorithms as the number of cores increased from

8 to 48. GRAZHDA*/sparsity outperformed consistently outperformed the other meth-

ods. The performance gap between the better methods (GRAZHDA*/sparsity, FAZHDA*,

OZHDA*, DAHDA*) and the baseline ZHDA* increases with the number of the cores.

This is because as the number of cores increases, communications overheads increases

with the number of cores, and our new work distribution method successfully mitigates

communications overhead.

90

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30 35 40 45 50
sp

ee
du

p
number of cores

GRAZHDA*/sparsity
FAZHDA*

OZHDA*
DAHDA*

GAZHDA*
ZHDA*

Figure 6-5: Speedup of HDA* variants (average over all instances in Table 6.2. Results are
for 1 node (8 cores), 2 nodes (16 cores), 4 nodes (32 cores) and 6 nodes (48 cores).

6.3.2 Cloud Environment Results

In addition to the 48 core cluster, we evaluated GRAZHDA*/sparsity on an Amazon EC2

cloud cluster with 128 virtual cores (vCPUs) and 480GB aggregated RAM (a cluster of 32

m1.xlarge EC2 instances, each with 4 vCPUs, 3.75 GB RAM/core. This is a less favor-

able environment for parallel search compared to a “bare-metal” cluster because physical

processors are shared with other users and network performance is inconsistent (Iosup,

Ostermann, Yigitbasi, Prodan, Fahringer, & Epema, 2011). We intentionally chose this

configuration to evaluate work distribution methods in an environment which is signifi-

cantly different from our other experiments. Table 6.3 shows that as with the smaller-scale

cluster results, GRAZHDA*/sparsity outperformed other methods in this large-scale cloud

environment.

6.3.3 24-Puzzle Experiments

We evaluated GRAZHDA*/sparsity on the 24-puzzle using the same configuration as Sec-

tion 1.2. Abstract feature generated by GRAZHDA*/sparsity is shown in Figure 6-6d. We

compared GRAZHDA*/sparsity (automated abstract feature generation) vs. AZHDA* with

the hand-crafted work distribution (HDA∗[Z ,Afeature]) (Figure 4-2d) and HDA∗[Z]. With 8

cores, the speedups were 7.84 (GRAZHDA*/sparsity), 7.85 (HDA∗[Z ,Afeature]), and 5.95

91

Table 6.3: Comparison of walltime, communication/search overhead (CO, SO) on a cloud
cluster (EC2) with 128 virtual cores (32 m1.xlarge EC2 instances) using the merge&shrink
heuristic. We run sequential A* on a different machine with 128 GB memory because some
of the instances cannot be solved by A* on a single m1.xlarge instance due to memory
limits. Therefore we report walltime instead of speedup.

Instance A* GRAZHDA*/sparsity FAZHDA*
[Z ,Afeauture/DTGsparsity] [Z ,Afeauture/DTGfluency]

expd time CO SO time CO SO
Airport18 48782782 102.34 0.59 0.49 95.48 0.59 0.29
Blocks11-0 28664755 12.40 0.42 0.37 22.86 0.68 0.53
Blocks11-1 45713730 17.21 0.42 0.25 32.60 0.66 0.82
Elevators08-7 74610558 51.90 0.54 0.25 121.90 0.55 0.26
Gripper9 243268770 78.90 0.42 0.01 82.90 0.43 0.06
Openstacks08-21 19901601 6.30 0.23 0.06 5.76 0.19 -0.05
Openstacks11-18 115632865 33.10 0.24 -0.14 33.25 0.23 -0.12
Pegsol08-29 287232276 58.85 0.44 0.16 81.75 0.42 0.55
PipesNoTk16 60116156 120.64 0.94 0.84 106.28 0.94 0.72
Trucks6 19109329 8.01 0.17 0.46 51.51 0.19 0.34
Average 99361115 43.03 0.42 0.25 59.87 0.48 0.39
Total walltime 894250040 387.31 538.81

Instance GAZHDA* OZHDA* DAHDA* ZHDA*
[Z ,Afeauture/DTGgreedy] [Zoperator] [Z ,Astate/SDDdynamic] [Z]

time CO SO time CO SO time CO SO time CO SO
Airport18 128.22 0.98 0.02 123.09 0.90 0.56 143.27 0.92 0.36 106.80 0.99 0.02
Blocks11-0 21.75 0.98 0.65 21.70 0.99 0.70 20.29 0.95 0.88 29.19 0.99 0.35
Blocks11-1 25.84 0.98 0.56 24.84 0.86 0.78 29.52 0.94 0.83 36.04 1.00 0.52
Elevators08-7 61.16 0.70 0.05 86.65 0.07 0.22 52.09 0.96 0.18 59.88 1.00 0.04
Gripper9 85.98 1.00 0.16 90.98 0.98 0.20 95.72 1.00 0.15 105.78 1.00 0.17
Openstacks08-21 5.67 0.71 -0.35 40.06 0.96 0.00 6.94 0.69 -0.17 14.65 1.00 -0.09
Openstacks11-18 71.34 0.77 -0.09 79.34 0.81 -0.00 84.67 0.76 0.01 49.97 1.00 -0.53
Pegsol08-29 98.53 0.98 0.06 54.13 0.34 0.13 108.17 1.00 0.11 120.27 0.98 0.16
PipesNoTk16 108.28 0.95 0.78 120.21 0.99 0.73 125.37 1.00 0.72 149.96 1.00 0.73
Trucks6 30.22 0.94 0.41 32.22 0.96 0.57 17.19 0.53 0.43 28.22 1.00 0.34
Average 56.53 0.89 0.29 61.13 0.77 0.41 60.00 0.87 0.36 66.00 1.00 0.29
Total walltime 508.77 550.13 539.96 593.96

(HDA∗[Z]). Thus, the completely automated GRAZHDA*/sparsity is competitive with a

carefully hand-designed work distribution method. For the 15-puzzle, the partition gen-

erated by GRAZHDA*/sparsity exactly corresponds to the hand-crafted hash function of

Figure 4-2b, so the performance is identical.

92

Table 6.4: Comparison of speedups, communication/search overheads (CO, SO) using ex-
pensive heuristic (LM-cut).

(a) Single multicore machine (8 cores)
Instance A* GRAZHDA*/sparsity DAHDA* ZHDA*

[Z ,Afeauture/DTGsparsity] [Z ,Astate/SDDdynamic] [Z]
time expd speedup CO SO speedup CO SO speedup CO SO

Blocks14-1 351.03 191948 5.53 0.33 0.19 2.08 0.30 1.82 5.40 0.90 0.05
Elevators08-7 1182.92 1465914 3.47 0.48 1.70 3.30 0.73 0.04 3.75 0.88 0.00
Elevators08-8 742.65 344304 7.19 0.41 0.06 4.80 0.72 0.03 5.65 0.82 0.00
Floortile11-4 1783.44 2876492 3.54 0.50 0.28 4.03 0.41 0.01 3.17 0.96 0.00
Gripper7 903.96 10082501 1.41 0.68 0.27 2.60 0.56 0.00 2.27 0.94 0.00
Openstacks08-15 707.31 11309809 4.95 0.32 -0.07 4.26 0.27 0.03 3.91 0.88 -0.04
Openstacks11-12 309.49 4250213 4.59 0.38 -0.00 4.40 0.29 -0.00 3.94 0.92 -0.01
Openstacks11-15 1187.58 13457961 4.04 0.36 0.10 4.09 0.28 0.01 3.59 0.89 0.00
PipesNoTk10 997.62 662717 2.65 0.86 0.00 2.10 0.96 0.01 3.02 0.89 0.00
PipesNoTk12 201.07 200502 4.36 0.84 0.00 4.65 0.47 0.09 4.69 0.90 0.00
PipesNoTk15 323.59 212678 4.61 0.85 0.00 3.83 0.57 0.22 4.91 0.89 0.01
PipesTk11 572.00 382587 6.45 0.37 0.01 3.57 0.64 0.00 3.69 0.86 0.00
Scanalyzer11-6 1149.31 699932 5.89 0.13 -0.01 3.14 0.44 -0.00 2.75 0.88 -0.00
Storage15 330.79 155979 4.70 0.70 0.04 4.67 0.68 0.01 4.95 0.85 0.00
Trucks9 199.02 65531 7.38 0.05 -0.04 3.72 0.06 0.42 3.40 0.87 -0.01
Trucks10 800.02 384585 6.85 0.04 0.01 4.42 0.04 0.15 2.03 0.91 0.03
Visitall11-7half 181.05 519064 6.59 0.14 0.24 5.62 0.16 0.15 6.09 0.87 0.00
Woodwrk11-6 283.73 172077 7.10 0.39 -0.00 5.97 0.27 -0.00 3.25 0.94 -0.00
Average 678.14 2635266 5.07 0.43 0.15 3.96 0.44 0.17 3.91 0.89 0.00
Total walltime 12206.58 47434794 3215.00 3513.00 3711.51

(b) Commodity Cluster with 6 nodes (48 cores)
Instance A* GRAZHDA*/sparsity DAHDA* ZHDA*

[Z ,Afeauture/DTGsparsity] [Z ,Astate/SDDdynamic] [Z]
time expd speedup CO SO speedup CO SO speedup CO SO

Blocks14-1 351.03 191948 22.86 0.34 0.50 20.22 0.32 0.65 16.79 0.98 0.18
Elevators08-7 1182.92 1465914 18.17 0.53 0.36 22.25 0.81 0.07 20.91 0.97 0.02
Elevators08-8 742.65 344304 25.58 0.45 0.51 30.78 0.84 0.10 31.43 0.95 0.05
Floortile11-4 1783.44 2876492 18.25 0.99 0.09 24.65 0.46 0.10 21.56 0.99 0.02
Gripper7 903.96 10082501 12.59 0.66 0.02 16.17 0.61 0.07 12.59 0.99 0.01
Openstacks11-11 721.30 11309809 43.09 0.36 -0.43 10.19 0.25 1.22 20.75 0.99 -0.02
Openstacks11-15 1187.58 13457961 15.50 0.28 0.28 17.39 0.23 0.25 19.53 0.99 0.01
Parcprinter11-12 195.51 218595 46.90 0.04 0.02 44.14 0.05 0.01 18.02 0.99 0.24
PipesNoTk10 997.62 662717 15.57 0.98 0.01 14.80 0.99 0.01 15.38 0.98 0.01
PipesNoTk12 201.07 200502 26.05 0.89 0.28 32.86 0.52 0.34 22.03 0.98 0.30
PipesNoTk15 323.59 212678 25.18 0.94 0.18 19.54 0.62 0.72 21.11 0.98 0.39
PipesTk8 1141.00 145828 17.96 0.98 0.04 17.38 0.98 0.06 18.99 0.98 0.03
PipesTk11 572.00 382587 30.35 0.41 0.16 23.62 0.65 0.06 19.31 0.98 0.04
Scanalyzer11-06 1149.31 699932 42.21 0.13 0.04 20.18 0.49 0.01 15.45 0.98 0.00
Storage15 330.79 155979 22.50 0.88 0.22 30.35 0.74 0.09 24.15 0.96 0.19
Trucks9 199.02 65531 24.82 0.05 0.78 18.92 0.06 1.42 12.24 0.98 0.96
Trucks10 800.02 384585 17.61 0.05 0.60 41.74 0.04 0.25 12.53 1.00 0.04
Visitall11-07half 181.05 519064 12.97 0.16 2.59 12.88 0.17 2.60 22.14 0.98 0.58
Woodwrk08-7 819.62 33871 36.12 0.74 0.07 31.91 0.74 0.37 26.71 1.00 0.07
Woodwrk11-6 283.73 172077 42.67 0.42 0.07 21.38 0.29 0.03 16.81 0.99 0.05
Average 756.91 2527318 26.06 0.55 0.17 23.98 0.52 0.24 19.26 0.98 0.09
Total walltime 12867.52 42964409 637.57 646.66 709.89

93

(a) 15-puzzle
HDA∗[Z]

(b) 15-puzzle
GRAZHDA*/sparsity

(c) 24-puzzle
HDA∗[Z]

(d) 24-puzzle
GRAZHDA*/sparsity

Figure 6-6: Abstract features generated by GRAZHDA*/sparsity
(HDA∗[Z ,Afeature/DTGsparsity]) for 15-puzzle and 24-puzzle. Abstract features gen-
erated on 15-puzzle exactly corresponds to the hand-crafted hash function of Figure
4-2b.

6.3.4 Evaluation of Parallel Search Overheads and Performance in Low Communications-

Cost Environments

In previous experiments, we compared work distribution functions using domain-specific

solvers with very fast node generation rates (Section 1), as well as domain-independent

planning using a fast heuristic function (Section 3). Next, we evaluate search overheads

and performance when node generation rates are low due to expensive node evaluations. In

such domains, the impact of communications overheads is minimal because overheads for

queue insertion, buffering, etc. are negligible compared to the computation costs associated

with node generation and evaluation. As a consequence, search overhead is the dominant

factor which determines search performance.

In particular, we evaluate different parallel work distribution strategies when applied to

domain-independent planning using the landmark-cut (LM-cut) heuristic, a state-of-the-art

heuristic which is a relatively expensive heuristic. While there is no dominance relationship

among planners using cheap heuristics such as merge&shrink heuristics (which require

only a table lookup during search) and expensive heuristics such as LM-cut, recent work

in forward-search based planning has focused on heuristics which tend to be slow, such as

heuristics that require the solution of a linear program at every search node (Pommerening,

Röger, Helmert, & Bonet, 2014; Imai & Fukunaga, 2015), so parallel strategies that focus

on minimizing search overheads is of practical importance. Previous evaluations of parallel

94

work distribution strategies in domain-independent planning used relatively fast heuristics.

Kishimoto et al. (2013), as well as Jinnai and Fukunaga (2016a, 2016b) used merge&shrink

abstraction based heuristics. Zhou and Hansen (2007) and Burns et al. (2010)used the max-

pair heuristic (Haslum & Geffner, 2000).Thus, this is the first evaluation of parallel forward

search for domain-independent planning using an expensive heuristic.

To evaluate the effect of SO and CO with the LM-cut heuristic, we compared the per-

formance of ZHDA*, DAHDA*, and GRAZHDA*/sparsity as representatives of methods

which optimize SO, CO, and both SO and CO, respectively. The instances used for this

experiment are different from the experiments using merge&shrink (Table 6.2), because

some of the instances used for the merge&shrink experiments were too easy to solve with

LM-cut and not suitable for evaluating parallel algorithms. The average node expansion

rate by sequential A* on the selected instances was 3886.02 node/sec. Compared to the

expansion rate with merge&shrink heuristic used in Section 3 (56378.03 node/sec), the ex-

pansion rate is 14.5 times slower. Therefore, the relative cost of communication is expected

to be smaller with LM-cut than merge&shrink heuristic.

Table 6.4a shows the results on a single multicore machine with 8 cores. Overall,

GRAZHDA*/sparsity outperformed ZHDA* and DAHDA*. Interestingly, although GRAZHDA*/sparsity

has higher SO, it was still faster than ZHDA* because of lower CO. Even with this low com-

munication cost environment, CO continues to be one of the major overhead for HDA*.

Table 6.4b shows the results on a commodity cluster with 48 cores. As in the multicore

environment, GRAZHDA*/sparsity outperformed ZHDA* and DAHDA*. However, the

relative speedup of ZHDA* to GRAZHDA*/sparsity is higher with LM-cut (0.75) than

with merge&shrink (0.66) (note that we used different instance set, so it may due to other

factors). Some of the instances (trucks9, visitall11-07-half) are too easy for a distributed

environment, and therefore on these instances, high SO is incurred due to the burst effect

(Section 1.2). Therefore, some of the instances have high SO even in ZHDA* where good

LB is achieved.

95

Chapter 7

Conclusions

We investigated node distribution methods for HDA*, and showed that previous methods

suffered from high communication overhead (HDA∗[Z]), high search overhead (HDA∗[P ,Astate]),

or both (HDA∗[P]), which limited their efficiency. We proposed Abstract Zobrist hashing, a

new distribution method which combines the strengths of both Zobrist hashing and abstrac-

tion, and AZHDA* (HDA∗[Z ,Afeature]), a new variant of HDA* which is based on AZH.

Our experimental results showed that AZHDA* achieves a successful trade-off between

communication and search overheads, resulting in better performance than previous work

distribution methods with hand-crafted abstract features.

We then extended the investigation to automated, domain-independent approaches for

generate work distribution. We formulated work distribution as graph partitioning, and

proposed and validated effesti , a model of search and communication overheads for HDA*

which can be used to predict the actual walltime efficiency. We proposed and evaluated

GRAZHDA*, a new top-down approach to work distribution for parallel best-first search

in the HDA* framework which approximate the optimal graph partitioning by partitioning

domain transition graphs according to an objective function such as sparsity.

We experimentally showed that GRAZHDA*/sparsity significantly improves both esti-

mated efficiency (effesti) as well as the actual performance (walltime efficiency) compared

to previous work distribution methods. Our results demonstrate the viability of approx-

97

imating the partitioning of the entire search space by applying graph partitioning to an

abstraction of the state space (i.e., the DTG). While our results indicate that sparsity works

well as a partitioning objective for GRAHZDA*, it is possible that a different objective

function might yield better results, since DTG-partitioning is only an approximation to

GW partitioning. We have experimented with another objective MIN(CO+LB) objective,

which minimizes (CO + LB), and found that the performance is comparable to sparsity.

Investigation of other objective functions is a direction for future work.

Despite significant improvements compared to previous work distribution approaches,

there is room for improvement. The gap between the effesti metric for GRAZHDA* and

an ideal model (IdealApprox) in Figure 6-4a represents the gap between actually parti-

tioning the state space graph (as IdealApprox does) vs. the approximation obtained by

the GRAZHDA* DTG partitioning. Closing this gap in effesti should lead to corresponding

improvements in actual walltime efficiency, and poses challenges for future work. One pos-

sible approach to closing this gap is to partition a merged DTG which represents multiple

SAS+ variables instead of partitioning a DTG of a single SAS+ variable. As merged DTGs

have a richer representation of the state space graph, partitioning them using an objective

function may result in a better approximation of the ideal partitioning. This approach is

similar to merge-and-shrink heuristic (Helmert et al., 2014) which merging multiple DTGs

into abstract state space to better estimate the state-space graph.

In this thesis, we assumed identical distance between each two cores. However, com-

munication costs vary among pairs of processors in distributed search, especially in cloud

cluster environments. Furthermore, as the number of cores scales to thousands or tens of

thousands or more, some consideration of core locality is likely to be necessary. Incor-

porating the technique to distribute nodes considering the locality of processors such as

LOHA&QE (Mahapatra & Dutt, 1997) may further improve the performance.

Implementing intra-node communications as interthread communication (OpenMP) is

shown to improve the performance on a hash-based parallel suboptimal search (Vidal, Vern-

hes, & Infantes, 2012). The technique should also improve the performance of HDA*.

98

Dynamic adjustment of the partitioning on Structured Duplicate Detection has shown

to be effective for external search (Zhou & Hansen, 2011). We may further improve the

performance of HDA* by adjusting the hash function in the course of the search.

Finally, GPU-based massively parallel search has recently been shown to be successful

(Zhou & Zeng, 2015). Investigation of tradeoffs between communication and search over-

head in a heterogeneous algorithm which seeks to effectively utilize all normal cores as well

as GPU cores using a framework based on abstract feature-based hashing is a direction for

future work.

99

Appendix A. Dynamic AHDA*

(DAHDA*), an improvement to AHDA*

for distributed memory systems

This section presents an improvement to AHDA* (Burns et al., 2010). In our experiments,

we used AHDA* as one of the baselines for evaluating our new AZHDA* strategies. The

baseline implementation of AHDA* (HDA∗[Z ,Astate/SDD]) is based on the greedy ab-

straction algorithm described in (Zhou & Hansen, 2006b), and selects a subset of DTGs

(atom groups). The greedy abstraction algorithm adds one DTG to the abstract graph (G)

at a time, choosing the DTG which minimizes the maximum out-degree of the abstract

graph, until the graph size (# of nodes) reaches the threshold given by a parameter Nmax.

PSDD requires a Nmax to be derived from the size of the available RAM. We found that

AHDA* with a static Nmax threshold as in PSDD performed poorly for a benchmark set

with varying difficulty because a fixed size abstract graph results in very poor load balance.

While poor load balance can lead to low efficiency and poor performance, a bad choice for

Nmax can be catastrophic when the system has a relatively small amount of RAM per core,

as poor load balance causes concentrated memory usage in the overloaded processors, re-

sulting in early memory exhaustion (i.e., AHDA* crashes because a thread/process which

is allocated a large number of states exhausts its local heap).

The AHDA* results in Table 1 are for a 48-core cluster, 2GB/core, and uses Nmax =

102, 103, 104, 105, 106 nodes based on Fast-Downward (Helmert, 2006) using merge&shrink

101

heuristic (Helmert et al., 2014). Smaller Nmax results in lower CO, but when Nmax is

too small for the problem, load imbalance results in a concentration of the nodes and

memory exhaustion. Although the total amount of RAM in current systems is grow-

ing, the amount of RAM per core has remained relatively small because the number of

cores has also been increasing (and is expected to continue increasing). Thus, this is a

significant issue with the straightforward implementation of AHDA* which uses a static

Nmax. To avoid this problem, Nmax must be set dynamically according to the size of

the state space for each instance. Thus, we implemented Dynamic AHDA* (DAHDA* =

HDA∗[Z ,Astate/SDDdynamic]), which dynamically set the size of the abstract graph accord-

ing to the number of DTGs (the state space size is exponential in the # of DTGs). We set

the threshold of the total number of features in the DTGs to be 30% of the total number of

features in the problem instance (we tested 10%, 30%, 50%, and 70% and found that 30%

performed best). Note that the threshold is relative to the number of features, not the state

space size as in AHDA*, which is exponential in the # features. Therefore, DAHDA* tries

to take into account of certain amount of features, whereas AHDA* sometimes use only a

fraction of features.

102

Table 1: Performance of AHDA* with fixed threshold (on 48 cores). Note that |G| > |G′|
does not indicate that all atom groups used in G are used in G′. DAHDA* limits the size of
abstract graph according to the number of features in abstract graph, whereas AHDA* set
maximum to Nmax. Due to this difference, DAHDA* tends to end up with a different set
of atom groups than AHDA*.

Instance A* DAHDA* AHDA*
[Z ,Astate/SDDdynamic] [Z ,Astate/SDD]

Nmax = 100
time expd speedup CO SO |G| speedup CO SO

Blocks10-0 129.29 11065451 25.11 0.88 0.08 14641 5.61 0.48 4.72
Blocks11-1 621.74 52736900 24.88 0.91 0.21 20736 memory exhaustion
Elevators08-5 165.22 7620122 27.59 0.83 -0.03 1500 6.54 0.61 1.84
Elevators08-6 453.21 18632725 15.28 0.88 0.31 73125 memory exhaustion
Gripper8 517.41 50068801 21.80 0.98 0.08 39366 16.84 0.39 0.58
Logistics00-10-1 559.45 38720710 17.52 0.84 0.00 140608 memory exhaustion
Miconic11-0 232.07 12704945 46.05 0.01 0.08 2048 7.61 0.00 5.39
Nomprime5 309.14 4160871 18.46 0.90 -0.05 4194304 memory exhaustion
Openstacks08-21 554.63 19901601 26.72 0.13 0.28 8388608 memory exhaustion
PipesNoTk10 157.31 2991859 15.58 0.98 0.01 32768 5.89 0.17 1.15
Scanalyzer08-6 195.49 10202667 21.23 0.94 0.00 16384 40.15 0.02 -0.07

AHDA*
[Z ,Astate/SDD]

Nmax = 1000 Nmax = 10000 Nmax = 100000 Nmax = 1000000
speedup CO SO speedup CO SO speedup CO SO speedup CO SO

Blocks10-0 memory exhaustion 18.24 0.39 0.29 16.72 0.47 0.25 14.77 0.54 0.24
Blocks11-1 memory exhaustion memory exhaustion 21.38 0.65 0.12 15.38 0.68 0.10
Elevators08-5 18.02 0.79 0.65 19.30 0.87 0.44 18.20 0.90 0.37 18.84 0.92 0.35
Elevators08-6 17.86 0.67 0.50 18.38 0.86 0.23 16.99 0.91 0.09 22.66 0.89 -0.02
Gripper8 memory exhaustion 30.17 0.53 0.31 25.31 0.65 0.21 24.65 0.70 0.16
Logistics00-10-1 memory exhaustion memory exhaustion memory exhaustion memory exhaustion
Miconic11-0 6.75 0.00 5.60 26.90 0.01 0.19 26.22 0.01 0.25 25.77 0.02 0.40
Nomprime5 18.28 0.31 0.07 16.47 0.43 0.10 19.92 0.58 0.01 17.07 0.60 0.00
Openstacks08-21 memory exhaustion memory exhaustion memory exhaustion memory exhaustion
PipesNoTk10 18.38 0.30 0.10 21.74 0.43 0.04 18.50 0.56 0.03 14.36 0.64 0.03
Scanalyzer08-6 38.11 0.03 -0.03 39.26 0.26 -0.07 30.17 0.47 -0.07 26.46 0.64 -0.07

103

Appendix B. Experimental results with
standard deviations

Table 9: Comparison of speedups, communication/search overhead (CO, SO) and their
standard deviations on a commodity cluster with 6 nodes, 48 processes using merge&shrink
heuristic (Extension of Table 6.2).

Instance A* GRAZHDA*/sparsity FAZHDA*
[Z ,Afeauture/DTGsparsity] [Z ,Afeauture/DTGfluency]

time expd speedup CO SO speedup CO SO
Blocks10-0 129.29 11065451 27.17 (4.11) 0.28 (0.02) 0.38 (0.41) 26.02 (0.74) 0.70 (0.00) 0.35 (0.04)
Blocks11-1 813.86 52736900 34.25 (3.54) 0.66 (0.00) 0.15 (0.13) 34.25 (0.64) 0.66 (0.00) 0.15 (0.03)
Elevators08-5 165.22 7620122 16.43 (2.81) 0.47 (0.01) 0.33 (0.06) 12.34 (0.24) 0.32 (0.00) 0.51 (0.01)
Elevators08-6 453.21 18632725 21.47 (0.90) 0.49 (0.00) 0.37 (0.04) 18.05 (0.61) 0.52 (0.00) 0.81 (0.09)
Gripper8 517.41 50068801 26.67 (0.75) 0.50 (0.00) 0.15 (0.08) 27.45 (0.73) 0.43 (0.00) 0.10 (0.12)
Logistics00-10-1 559.45 38720710 45.16 (3.28) 0.43 (0.00) 0.01 (0.03) 43.85 (3.05) 0.57 (0.00) 0.02 (0.00)
Miconic11-0 232.07 12704945 41.97 (0.54) 0.01 (0.00) 0.07 (0.01) 42.43 (0.57) 0.01 (0.00) 0.06 (0.01)
Miconic11-2 262.01 14188388 45.26 (0.60) 0.01 (0.00) 0.05 (0.00) 44.87 (1.18) 0.01 (0.00) 0.05 (0.01)
NoMprime5 309.14 4160871 23.95 (0.85) 0.80 (0.00) -0.04 (0.02) 22.87 (2.98) 0.79 (0.00) -0.05 (0.03)
Nomystery10 179.52 1372207 34.80 (0.87) 0.51 (0.00) 0.12 (0.03) 22.99 (4.55) 0.24 (0.00) -0.44 (0.10)
Openstacks08-19 282.45 15116713 24.67 (1.25) 0.27 (0.01) 0.34 (0.05) 20.00 (0.86) 0.24 (0.00) 0.37 (0.04)
Openstacks08-21 554.63 19901601 25.23 (0.51) 0.17 (0.00) 0.35 (0.03) 24.97 (0.42) 0.15 (0.00) 0.35 (0.02)
Parcprinter11-11 307.19 6587422 20.26 (0.93) 0.26 (0.00) 0.55 (0.29) 13.08 (4.09) 0.26 (0.03) 0.61 (0.67)
Parking11 237.05 2940453 29.75 (0.48) 0.40 (0.00) 0.34 (0.01) 29.67 (4.12) 0.63 (0.00) 0.11 (0.10)
Pegsol11-18 801.37 106473019 21.03 (0.65) 0.39 (0.00) 0.02 (0.01) 20.97 (0.21) 0.39 (0.00) 0.00 (0.01)
PipesNoTk10 157.31 2991859 15.73 (0.38) 0.98 (0.00) 0.01 (0.00) 15.64 (0.35) 0.98 (0.00) 0.01 (0.00)
PipesTk12 321.55 15990349 33.78 (4.22) 0.46 (0.00) 0.05 (0.01) 39.65 (2.65) 0.46 (0.00) 0.03 (0.01)
PipesTk17 356.14 18046744 43.92 (2.69) 0.54 (0.00) 0.01 (0.00) 45.03 (3.81) 0.54 (0.00) 0.01 (0.00)
Rovers6 1042.69 36787877 41.17 (2.51) 0.15 (0.00) 0.14 (0.09) 40.48 (1.40) 0.15 (0.00) 0.17 (0.04)
Scanalyzer08-6 195.49 10202667 32.92 (0.74) 0.12 (0.00) 0.01 (0.00) 30.31 (0.56) 0.12 (0.00) 0.01 (0.00)
Scanalyzer11-6 152.92 6404098 43.83 (0.54) 0.16 (0.00) 0.13 (0.00) 27.31 (1.68) 0.18 (0.00) 0.34 (0.05)
Average 382.38 21557805 30.92 (1.58) 0.38 (0.00) 0.17 (0.06) 28.68 (1.69) 0.40 (0.00) 0.17 (0.07)
Total walltime 8029.97 452713922 277.91 (14.20) 301.38 (17.65)

104

Cont. Table 9.

Instance GAZHDA* OZHDA*
[Z ,Afeauture/DTGgreedy] [Zoperator]

speedup CO SO speedup CO SO
Blocks10-0 21.81 (3.26) 0.99 (0.00) 0.12 (0.30) 15.47 (4.37) 0.98 (0.00) 0.34 (0.34)
Blocks11-1 29.20 (3.22) 0.99 (0.00) 0.03 (0.16) 29.20 (4.99) 0.99 (0.00) 0.03 (0.21)
Elevators08-5 29.35 (2.77) 0.65 (0.04) -0.00 (0.36) 21.86 (0.47) 0.09 (0.00) 0.44 (0.03)
Elevators08-6 34.52 (4.09) 0.24 (0.00) -0.09 (0.00) 32.70 (2.96) 0.41 (0.00) 0.22 (0.03)
Gripper8 21.86 (0.58) 0.81 (0.00) 0.06 (0.02) 24.77 (3.56) 0.98 (0.04) 0.14 (0.00)
Logistics00-10-1 11.68 (0.95) 0.85 (0.00) 0.25 (0.00) 11.68 (2.14) 0.85 (0.00) 0.25 (0.05)
Miconic11-0 13.15 (3.27) 0.53 (0.00) 0.24 (0.16) 37.86 (0.81) 0.02 (0.00) 0.02 (0.02)
Miconic11-2 8.53 (0.97) 0.53 (0.00) 0.74 (0.16) 36.86 (0.65) 0.02 (0.00) 0.07 (0.01)
NoMprime5 18.55 (0.69) 0.95 (0.00) -0.06 (0.01) 16.66 (0.44) 0.94 (0.00) 0.00 (0.02)
Nomystery10 18.98 (4.04) 0.42 (0.00) -0.07 (0.06) 21.61 (1.44) 0.74 (0.00) 0.11 (0.04)
Openstacks08-19 22.14 (1.19) 0.38 (0.01) 0.21 (0.05) 17.11 (1.28) 0.34 (0.00) 0.32 (0.13)
Openstacks08-21 25.67 (0.82) 0.15 (0.00) 0.31 (0.04) 39.34 (0.52) 0.92 (0.00) 0.05 (0.11)
Parcprinter11-11 16.85 (2.71) 0.74 (0.00) 0.41 (0.49) 15.98 (1.44) 0.82 (0.00) 0.56 (0.03)
Parking11 28.43 (1.01) 0.98 (0.00) 0.02 (0.03) 26.76 (3.07) 0.97 (0.00) 0.07 (0.14)
Pegsol11-18 16.22 (0.27) 0.77 (0.00) 0.05 (0.01) 26.17 (0.26) 0.34 (0.00) -0.03 (0.00)
PipesNoTk10 15.58 (0.36) 0.98 (0.00) 0.01 (0.00) 15.22 (0.35) 0.98 (0.00) 0.02 (0.00)
PipesTk12 19.84 (3.18) 0.99 (0.01) 0.01 (0.00) 21.40 (0.94) 0.88 (0.00) 0.04 (0.02)
PipesTk17 26.64 (0.20) 0.98 (0.00) 0.00 (0.00) 28.82 (0.13) 0.88 (0.00) 0.00 (0.00)
Rovers6 33.49 (1.01) 0.56 (0.00) 0.01 (0.02) 41.00 (2.13) 0.31 (0.00) 0.03 (0.02)
Scanalyzer08-6 20.28 (2.22) 0.77 (0.00) 0.01 (0.00) 23.70 (1.53) 0.66 (0.00) 0.01 (0.00)
Scanalyzer11-6 16.36 (3.89) 0.65 (0.00) 0.49 (0.16) 38.82 (1.64) 0.30 (0.00) 0.09 (0.01)
Average 21.39 (1.94) 0.71 (0.00) 0.13 (0.10) 25.86 (1.67) 0.64 (0.00) 0.13 (0.06)
Total walltime 398.75 (36.16) 331.18 (21.39)
Instance DAHDA* ZHDA*

[Z ,Astate/SDDdynamic] [Z]
speedup CO SO speedup CO SO

Blocks10-0 25.11 (4.89) 0.88 (0.00) 0.08 (0.05) 14.93 (4.05) 0.98 (0.00) 0.30 (0.25)
Blocks11-1 24.88 (2.00) 0.91 (0.00) 0.21 (0.01) 27.98 (2.28) 0.98 (0.00) 0.07 (0.09)
Elevators08-5 27.59 (4.07) 0.83 (0.01) -0.03 (0.05) 27.54 (2.72) 0.98 (0.01) -0.03 (0.03)
Elevators08-6 15.28 (1.77) 0.88 (0.00) 0.31 (0.06) 18.19 (3.15) 0.96 (0.00) 0.06 (0.14)
Gripper8 21.80 (2.92) 0.98 (0.04) 0.08 (0.05) 21.66 (3.42) 0.98 (0.01) 0.08 (0.03)
Logistics00-10-1 17.52 (0.80) 0.84 (0.00) 0.00 (0.00) 16.09 (0.56) 0.99 (0.00) 0.00 (0.02)
Miconic11-0 46.05 (0.87) 0.01 (0.00) 0.08 (0.01) 7.40 (2.74) 0.96 (0.00) 0.13 (0.04)
Miconic11-2 33.81 (1.35) 0.01 (0.00) 0.18 (0.00) 14.67 (2.65) 0.96 (0.00) 0.05 (0.06)
NoMprime5 18.46 (0.59) 0.90 (0.00) -0.05 (0.01) 16.63 (0.57) 0.98 (0.00) -0.02 (0.01)
Nomystery10 28.41 (2.29) 0.60 (0.00) -0.07 (0.10) 21.68 (3.30) 0.99 (0.00) -0.07 (0.22)
Openstacks08-19 24.54 (1.05) 0.24 (0.00) 0.18 (0.03) 25.99 (3.40) 0.99 (0.00) -0.05 (0.19)
Openstacks08-21 26.72 (1.06) 0.13 (0.00) 0.28 (0.05) 39.06 (2.71) 0.92 (0.00) -0.00 (0.12)
Parcprinter11-11 7.00 (2.91) 0.19 (0.01) 4.38 (1.54) 19.15 (2.95) 0.97 (0.00) 0.08 (0.16)
Parking11 28.84 (0.82) 0.52 (0.00) 0.07 (0.02) 27.09 (3.55) 0.98 (0.00) 0.04 (0.16)
Pegsol11-18 22.16 (0.83) 0.34 (0.00) -0.01 (0.02) 16.97 (1.05) 0.98 (0.00) 0.03 (0.03)
PipesNoTk10 15.58 (0.46) 0.98 (0.00) 0.01 (0.00) 11.22 (0.38) 0.98 (0.00) 0.03 (0.00)
PipesTk12 25.12 (0.31) 0.67 (0.00) 0.00 (0.00) 19.78 (0.36) 0.98 (0.00) 0.00 (0.00)
PipesTk17 31.16 (0.58) 0.60 (0.00) 0.01 (0.00) 26.27 (4.15) 0.98 (0.01) 0.00 (0.00)
Rovers6 25.48 (2.86) 0.05 (0.00) 0.26 (0.07) 30.01 (2.50) 0.76 (0.00) 0.00 (0.07)
Scanalyzer08-6 21.23 (2.62) 0.94 (0.00) 0.00 (0.00) 16.54 (0.43) 0.98 (0.00) 0.01 (0.00)
Scanalyzer11-6 19.51 (3.55) 0.50 (0.00) 0.46 (0.14) 20.36 (0.66) 0.98 (0.00) 0.05 (0.01)
Average 24.11 (1.84) 0.57 (0.00) 0.31 (0.11) 20.53 (2.27) 0.96 (0.00) 0.01 (0.08)
Total walltime 377.86 (28.85) 433.23 (47.90)

105

Bibliography

Asai, M., & Fukunaga, A. (2014). Fully automated cyclic planning for large-scale man-

ufacturing domains.. In Proceedings of the International Conference on Automated

Planning and Scheduling (ICAPS).

Asai, M., & Fukunaga, A. (2016). Tiebreaking strategies for a* search: How to explore

the final frontier. In Proceedings of the AAAI Conference on Artificial Intelligence

(AAAI).

Bäckström, C., & Nebel, B. (1995). Complexity results for SAS+ planning. Computational

Intelligence, 11(4), 625–655.

Buluc, A., Meyerhenke, H., Safro, I., Sanders, P., & Schulz, C. (2015). Recent advances in

graph partitioning. arXiv preprint arXiv:1311.3144.

Burns, E., Lemons, S., Ruml, W., & Zhou, R. (2010). Best-first heuristic search for multi-

core machines. Journal of Artificial Intelligence Research (JAIR), 39, 689–743.

Burns, E. A., Hatem, M., Leighton, M. J., & Ruml, W. (2012). Implementing fast heuristic

search code. In Proceedings of the Annual Symposium on Combinatorial Search, pp.

25–32.

Edelkamp, S., & Schroedl, S. (2010). Heuristic Search: Theory and Applications. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

Erdem, E., & Tillier, E. (2005). Genome rearrangement and planning. In Proceedings of

the AAAI Conference on Artificial Intelligence (AAAI), pp. 1139–1144.

107

Evans, J. (2006). A scalable concurrent malloc (3) implementation for FreeBSD. In Proc.

BSDCan Conference.

Evett, M., Hendler, J., Mahanti, A., & Nau, D. (1995). PRA*: Massively parallel heuristic

search. Journal of Parallel and Distributed Computing, 25(2), 133–143.

Fiduccia, C. M., & Mattheyses, R. M. (1982). A linear-time heuristic for improving net-

work partitions. In Conference on Design Automation, pp. 175–181.

Fikes, R. E., & Nilsson, N. (1971). STRIPS: A New Approach to the Application of Theo-

rem Proving to Problem Solving. Artificial Intelligence, 5(2), 189–208.

Hart, P., Nilsson, N., & Raphael, B. (1968a). A formal basis for the heuristic determination

of minimum cost paths. IEEE Transactions on System Sciences and Cybernetics,

SSC-4(2), 100–107.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968b). A formal basis for the heuristic de-

termination of minimum cost paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2), 100–107.

Haslum, P., & Geffner, H. (2000). Admissible heuristics for optimal planning. In Pro-

ceedings of the International Conference on Automated Planning and Scheduling

(ICAPS), pp. 140–149.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelligence

Research, 26, 191–246.

Helmert, M., Haslum, P., & Hoffmann, J. (2007). Flexible abstraction heuristics for optimal

sequential planning. In Proceedings of the International Conference on Automated

Planning and Scheduling (ICAPS), pp. 176–183.

Helmert, M., Haslum, P., Hoffmann, J., & Nissim, R. (2014). Merge-and-shrink abstrac-

tion: A method for generating lower bounds in factored state spaces. Journal of the

ACM (JACM), 61(3), 16.

108

Helmert, M., & Lasinger, H. (2010). The scanalyzer domain: Greenhouse logistics as a

planning problem.. In Proceedings of the International Conference on Automated

Planning and Scheduling (ICAPS).

Hendrickson, B., & Kolda, T. G. (2000). Graph partitioning models for parallel computing.

Parallel computing, 26(12), 1519–1534.

Holzmann, G. J., & Boŝnaĉki, D. (2007). The design of a multicore extension of the SPIN

model checker. IEEE Transactions on Software Engineering, 33(10), 659–674.

Imai, T., & Fukunaga, A. (2015). On a practical, integer-linear programming model for

delete-free tasks and its use as a heuristic for cost-optimal planning. Journal of

Artificial Intelligence Research, 54, 631–677.

Iosup, A., Ostermann, S., Yigitbasi, M. N., Prodan, R., Fahringer, T., & Epema, D. H.

(2011). Performance analysis of cloud computing services for many-tasks scientific

computing. IEEE Transactions on Parallel and Distributed Systems, 22(6), 931–945.

Irani, K., & Shih, Y. (1986). Parallel A* and AO* algorithms: An optimality criterion

and performance evaluation. In International Conference on Parallel Processing, pp.

274–277.

Jinnai, Y., & Fukunaga, A. (2016a). Abstract Zobrist hash: An efficient work distribution

method for parallel best-first search. In Proceedings of the AAAI Conference on

Artificial Intelligence (AAAI), pp. 717–723.

Jinnai, Y., & Fukunaga, A. (2016b). Automated creation of efficient work distribution func-

tions for parallel best-first search. In Proceedings of the International Conference on

Automated Planning and Scheduling (ICAPS).

Jinnai, Y., & Fukunaga, A. (2017a). Learning to prune dominated action sequences in

online black-box domain. In Proceedings of the AAAI Conference on Artificial Intel-

ligence (AAAI). (to appear).

Jinnai, Y., & Fukunaga, A. (2017b). On work distribution functions for parallel best-first

search. Journal of Artificial Intelligence Research. (to appear).

109

Jonsson, P., & Bäckström, C. (1998). State-variable planning under structural restrictions:

Algorithms and complexity. Artificial Intelligence, 100(1), 125–176.

Jyothi, S. A., Singla, A., Godfrey, P., & Kolla, A. (2014). Measuring and understanding

throughput of network topologies. arXiv preprint arXiv:1402.2531.

Karypis, G., & Kumar, V. (1998). A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM Journal on scientific Computing, 20(1), 359–392.

Kishimoto, A., Fukunaga, A., & Botea, A. (2013). Evaluation of a simple, scalable, parallel

best-first search strategy. Artificial Intelligence, 195, 222–248.

Kishimoto, A., Fukunaga, A. S., & Botea, A. (2009). Scalable, parallel best-first search

for optimal sequential planning. In Proceedings of the International Conference on

Automated Planning and Scheduling (ICAPS), pp. 201–208.

Kobayashi, Y., Kishimoto, A., & Watanabe, O. (2011). Evaluations of Hash Distributed A*

in optimal sequence alignment. In Proceedings of the International Joint Conference

on Artificial Intelligence (IJCAI), pp. 584–590.

Korf, R. (1985). Depth-first iterative deepening: An optimal admissible tree search. Artifi-

cial Intelligence, 97, 97–109.

Korf, R. E., & Felner, A. (2002). Disjoint pattern database heuristics. Artificial Intelligence,

134(1), 9–22.

Korf, R. E., & Schultze, P. (2005). Large-scale parallel breadth-first search. In Proceedings

of the AAAI Conference on Artificial Intelligence (AAAI), pp. 1380–1385.

Korf, R. E., Zhang, W., Thayer, I., & Hohwald, H. (2005). Frontier search. Journal of the

ACM (JACM), 52(5), 715–748.

Kumar, V., Ramesh, K., & Rao, V. N. (1988). Parallel best-first search of state-space graphs:

A summary of results.. In Proceedings of the AAAI Conference on Artificial Intelli-

gence (AAAI), Vol. 88, pp. 122–127.

110

Leighton, T., & Rao, S. (1999). Multicommodity max-flow min-cut theorems and their use

in designing approximation algorithms. Journal of the ACM (JACM), 46(6), 787–

832.

Lipovetzky, N., Ramirez, M., & Geffner, H. (2015). Classical planning with simulators: Re-

sults on the Atari video games. In Proceedings of the International Joint Conference

on Artificial Intelligence (IJCAI), pp. 1610–1616.

Mahapatra, N. R., & Dutt, S. (1997). Scalable global and local hashing strategies for

duplicate pruning in parallel A* graph search. IEEE Transactions on Parallel and

Distributed Systems, 8(7), 738–756.

Pearl, J. (1984). Heuristics - Intelligent Search Strategies for Computer Problem Solving.

Addison–Wesley.

Pearson, W. R. (1990). Rapid and sensitive sequence comparison with FASTP and

FASTA. Methods in enzymology, 183, 63–98. Matrix score is available at

http://prowl.rockefeller.edu/aainfo/pam250.htm.

Phillips, M., Likhachev, M., & Koenig, S. (2014). PA*SE: Parallel A* for slow expan-

sions. In Proceedings of the International Conference on Automated Planning and

Scheduling (ICAPS).

Pommerening, F., Röger, G., Helmert, M., & Bonet, B. (2014). LP-based heuristics for

cost-optimal planning. In Proceedings of the International Conference on Automated

Planning and Scheduling (ICAPS).

Romein, J. W., Plaat, A., Bal, H. E., & Schaeffer, J. (1999). Transposition table driven

work scheduling in distributed search. In Proceedings of the AAAI Conference on

Artificial Intelligence (AAAI), pp. 725–731.

Sousa, A., & Tavares, J. (2013). Toward automated planning algorithms applied to produc-

tion and logistics. IFAC Proceedings Volumes, 46(24), 165–170.

111

Thompson, J. D., Koehl, P., Ripp, R., & Poch, O. (2005). BAliBASE 3.0: Latest develop-

ments of the multiple sequence alignment benchmark. Proteins: Structure, Function

and Genetics (PROTEINS), 61(1), 127–136.

Vidal, V., Vernhes, S., & Infantes, G. (2012). Parallel AI planning on the SCC. In 4th

Many-core Applications Research Community (MARC) Symposium, p. 15.

Zhou, R., & Hansen, E. A. (2004). Structured duplicate detection in external-memory graph

search. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp.

683–689.

Zhou, R., & Hansen, E. A. (2006a). Breadth-first heuristic search. Artificial Intelligence,

170(4), 385–408.

Zhou, R., & Hansen, E. A. (2006b). Domain-independent structured duplicate detection.

In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 1082–

1087.

Zhou, R., & Hansen, E. A. (2007). Parallel structured duplicate detection. In Proceedings

of the AAAI Conference on Artificial Intelligence (AAAI), pp. 1217–1223.

Zhou, R., & Hansen, E. A. (2011). Dynamic state-space partitioning in external-memory

graph search. In Proceedings of the International Conference on Automated Planning

and Scheduling (ICAPS), pp. 290–297.

Zhou, Y., & Zeng, J. (2015). Massively parallel A* search on a GPU. In Proceedings of

the AAAI Conference on Artificial Intelligence (AAAI), pp. 1248–1255.

Zobrist, A. L. (1970). A new hashing method with application for game playing. reprinted

in International Computer Chess Association Journal (ICCA), 13(2), 69–73.

112

