

Policy and Value Transfer in Lifelong Reinforcement Learning

Yuu Jinnai, David Abel, Yue Guo, George Konidaris, Michael L. Littman {yuu_jinnai,david_abel,yue_guo,george_konidaris,michael_littman}@brown.edu

Department of Computer Science, Brown University

Goal

Understand knowledge transfer in lifelong RL.

Lifelong Reinforcement [1] Learning

Objective 1: Find the policy that maximizes the expected performance over the distribution:

$$rg \max_{\pi \in \Pi} \mathbb{E}_{M \sim D} \left[V_M^\pi(s_0) \right]$$
 Performance of π on task M .

Jumpstart Policies

Theorem 1. For a distribution of MDPs with R ~ D, Average MDP is an optimal fixed policy. [2]

Theorem 2. For a distribution of MDPs with R ~ D, the performance of Average MDP has a lower bound:

Jumpstart Experiments

Informed Transfer for RL

PAC-MDP [6]

Sample complexity of many PAC-MDP algorithms depends on the of overestimation of the initial value function:

$$\tilde{O}\left(\sum_{(s,a)\in S\times A} \max\left\{Q_{init}(s,a) - V^*(s), 0\right\}\right)$$

(Objective) Minimize the overestimate

 $Q_{init}(s,a) \ge Q^*(s,a)$ (Constraint) Do not underestimate:

(Our Solution) Initialize with:

Proposed Algortihm: MaxQInit

Approximate $Q_{max}(s,a)$ from n sampled MDPs:

$$MaxQInit(s, a) := \max_{M \in \{M_1, \dots, M_n\}} \widehat{Q}_M(s, a)$$

Theorem 3. For a given δ , after $n \ge \frac{\ln(\delta)}{\ln(1-p_{min})}$ sampled MDPs, MaxQInit will retain optimism with probability 1 - δ :

 $\forall_{s,a} : \text{MAXQINIT}(s,a) \ge \max_{M \in \mathcal{M}} Q_M^*(s,a)$

Transfer Experiments

