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Goal Jumpstart Policies Informed Transfer for RL

Understand knowledge transfer in lifelong RL. - D oo D PAC-MDP /6]

L Sample complexity of many PAC-MDP algorithms depends on the of
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Action Prior /5] Average MDP (Objective) Minimize the :overestimate

Probability the action is optimal: Choose optimal action in averaged MDP:
(Constraint) Do not underestimate: Qinit(s,a) > Q* (s, a)
: MPE’D (a = argmax Q3 ,(s,a’)

v : (Our Solution) Initialize with: Qmaz(8,a) = J\I}lea}// Q%,(s,a)
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Proposed Algortihm: MaxQlInit

Approximate (.nqz (S, @) from n sampled MDPs:

Lif&lOn Rei nfO rcement [1] Theorem 1. For a distribution of MDPs with R ~ D, Average MAXQINIT(s, a) 1= max O (s, a) ‘

MDP is an optimal fixed policy. [2] Me{Mi,....Mp}

Lea rn I n Theorem 3. For a given 0, after n > 725>~ sampled MDPs,

Theorem 2. For a distribution of MDPs with R ~ D. the MaxQInit will retain optimism with probability 1 - O:

performance of Average MDP has a lower bound: Vs : MAXQINIT(s,a) > max Q%,(s,a)
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Expecied 2 Vi (s)|| = max Pr(M)Vii(s)

. Sample a task from a | -performance of M~D |7 Men

distribution: M ~ D. Avg. MOP policy : Transfer Experiments
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Objective 1: Find the policy that maximizes the
expected performance over the distribution:
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