

Learning to Prune
Dominated Action Sequences in

Online Black­box Planning
Yuu Jinnai Alex Fukunaga

The University of Tokyo

Black­box Planning in
Arcade Learning Environment

Arcade Learning Environment
(Bellemare et al. 2013)

• What a human sees

Black­box Planning in
Arcade Learning Environment

Arcade Learning Environment
(Bellemare et al. 2013)

?
0101 1111 0010 ….

?
0101 1111 0010 ….

?
0101 1111 0010 ….

• What the computer sees

cc

• The set of actions which are “useful” in each environment
(= game) is a subset of the available action set in the ALE

• Yet an agent has no prior knowledge regarding which actions
are relevant to the given environment in black-box domain

Neutral
Up
Up-left
Left
Down-left
Down
Down-right
Right
Up-right

Neutral + fire
Up + fire
Up-left + fire
Left + fire
Down-left + fire
Down + fire
Down-right + fire
Right + fire
Up-right + fire

Neutral
Up
Left
Down
Right

General­purpose agents have many
irrelevant actions

Actions which are useful
in the environment

Available action set in the ALE
(18 actions)

State Space Planning Problem

Two ways of domain description
• Transparent model domain (e.g. PDDL)
• Black-box domain

Transparent Model Domain

Init: ontable(a),ontable(b),clear(a),clear(b)
Goal: on(a,b)
Action:

Move(b,x,y)
Precond: on(b,x),clear(x),clear(y)
Effect: on(b,y),clear(x),¬on(b,x),¬clear(y)

A

B
Example: blocks world

AB

Input: initial state, goal condition, action set is described in logic
(e.g. PDDL)

• Easy to compute relevant action
• Possilble to deduce which actions are useful

Initial state Goal condition

Black­box Domain

• Domain description in Black-box domain:

• s0: initial state (bit vector)

• suc(s, a): (black-box) successor generator function returns a
 state which results when action a is applied to state s

• r(s, a): (black-box) reward function (or goal condition)

→No description of which actions are valid/relevant

?
0101 1111 0010 ….

?
1011 1001 1000 ….

Initial state Goal condition

Arcade Learning Environment (ALE):
A Black­box Domain (Bellemare et al. 2013)

Arcade Learning Environment

• Domain description in the ALE:
• State: RAM state (bit vector of 1024 bits)
• Successor generator: Complete emulator
• Reward function: Complete emulator

• Domain description in the ALE:
• 18 available actions for an agent
• No description of which actions are relevant/required
• Node generation is the main bottleneck of walltime

(requires running simulator)

Arcade Learning Environment (ALE):
A Black­box Domain (Bellemare et al. 2013)

Arcade Learning Environment

Two Lines of Research in the ALE
(Bellemare et al. 2013)

• Online planning setting (e.g. Lipovetzky et al. 2015)

An agent runs a simulated lookahead each k (= 5) frames and
chooses an action to execute next (no prior learning)

• Learning setting (e.g. Mnih et al. 2015)

An agent generates a reactive controller for mapping states
into actions

We focus on Online planning setting for this talk
(applying our method to RL is future work)

Online Planning on the ALE
(Bellemare et al 2013)

Up Down

Up Down Up Down

accumulated
reward
r = 10

r=5 r=8 r=9

Current
game state

For each planning iteration (= planning episode)

1.Run a simulated lookahead with a limited amount of computational
resource (e.g. # of simulation frames)

2.Choose an action which leads to the best accumulated reward

Up Down

Up Down Up Down

Current
game state

Online Planning on the ALE
(Bellemare et al 2013)

For each planning iteration (= planning episode)

1.Run a simulated lookahead with a limited amount of computational
resource (e.g. # of simulation frames)

2.Choose an action which leads to the best accumulated reward

Up Down

Up Down

Up
 Down

Up Down

Up Down

r=6 r=8 r=12 r=11

Current
game state

Online Planning on the ALE
(Bellemare et al 2013)

For each planning iteration (= planning episode)

1.Run a simulated lookahead with a limited amount of computational
resource (e.g. # of simulation frames)

2.Choose an action which leads to the best accumulated reward

・
・

Up Down

Up Down

Up
 Down

Up Down

Up Down

For each planning iteration (= planning episode)

1.Run a simulated lookahead with a limited amount of computational
resource (e.g. # of simulation frames)

2.Choose an action which leads to the best accumulated reward

Current
game state

Online Planning on the ALE
(Bellemare et al 2013)

cc

• The set of actions which are “useful” in each environment
(= game) is a subset of the available action set in the ALE

Neutral
Up
Up-left
Left
Down-left
Down
Down-right
Right
Up-right

Neutral + fire
Up + fire
Up-left + fire
Left + fire
Down-left + fire
Down + fire
Down-right + fire
Right + fire
Up-right + fire

Neutral
Up
Left
Down
Right

General­purpose agents have many
irrelevant actions

Actions which are useful
in the environment

Available action set in the ALE
(18 actions)

cc

• The set of actions which are “useful” in each environment
(= game) is a subset of the available action set in the ALE

• The set of actions which are “useful” in each state in the
environment is a smaller subset

Neutral
Up
Up-left
Left
Down-left
Down
Down-right
Right
Up-right

Neutral + fire
Up + fire
Up-left + fire
Left + fire
Down-left + fire
Down + fire
Down-right + fire
Right + fire
Up-right + fire

Neutral
Up
Left
Down
Right

Neutral
Up
Left

Actions which are useful
in the state

General­purpose agents have many
irrelevant actions

Available action set in the ALE
(18 actions)

Actions which are useful
in the environment

Neutral
Down
Down-right
Right
(+ fire)

Up
Up-left
Up-right
(+ fire)

Left
Down-left
(+ fire)

• Generated duplicate nodes can be pruned by duplicate detection
• However, in simulation-based black-box domain node

generation is the main bottleneck of the walltime performance

→ By pruning irrelevant actions we should make use of the
computational resource more efficiently

General­purpose agents have many
irrelevant actions

Dominated action sequence pruning (DASP)

• Goal: Find action sequences which are useful in the environment
(for simplicity we explain using action sequence of length=1)

• Prune redundant actions in the course of online planning
• Find a minimal action set which can reproduce previous search

graphs and use the action set for the next planning episode

Dominated action sequence pruning (DASP)

Action set available
to the agent
{Up,
 Down,
 Up+Fire,
 Down+Fire}

Minimal action set
{Up,
 Down}

Up+Fire
Up

Down+Fire
Down

Up+Fire
Up

Down+Fire
Down

Up Down

Up Down

DASP: Find a minimal action set

• Algorithm: Find a minimal action set A

Up+Fire
Up

Down+Fire
Down

Up+Fire
Up

Down+Fire
Down

search graphs in previous episodes

• Algorithm: Find a minimal action set A

1.vi ∈ V corresponds to action i in hypergraph G = (V, E).

Down
Down+

Fire

Up
Up+
Fire

Up+Fire
Up

Down+Fire
Down

Up+Fire
Up

Down+Fire
Down

Hypergraph Gsearch graphs in previous episodes

DASP: Find a minimal action set

Down
Down+

Fire

Up
Up+
Fire

Up+Fire
Up

Down+Fire
Down

Up+Fire
Up

Down+Fire
Down

Hypergraph Gsearch graphs in previous episodes

DASP: Find a minimal action set

• Algorithm: Find a minimal action set A

1.vi ∈ V corresponds to action i in hypergraph G = (V, E).
e(v0, v1, …, vn) ∈E iff there is one or more duplicate search nodes

generated by all of v0,v1,…,vn
but not by any other actions.

Down
Down+

Fire

Up
Up+
Fire

Up+Fire
Up

Down+Fire
Down

Up+Fire
Up

Down+Fire
Down

Hypergraph G

A = {Up, Down}

search graphs in previous episodes

DASP: Find a minimal action set

• Algorithm: Find a minimal action set A

1.vi ∈ V corresponds to action i in hypergraph G = (V, E).
e(v0, v1, …, vn) ∈E iff there is one or more duplicate search nodes

generated by all of v0,v1,…,vn
but not by any other actions.

2.Add the minimal vertex cover of G to A

• Algorithm: Find a minimal action set A

1.vi ∈ V corresponds to action i in hypergraph G = (V, E).
e(v0, v1, …, vn) ∈E iff there is one or more duplicate search nodes

generated by all of v0,v1,…,vn
but not by any other actions.

2.Add the minimal vertex cover of G to A

Down
Down+

Fire

Up
Up+
Fire

Hypergraph G

A = {Up, Down}

DASP: Find a minimal action set

Up Down

Up Down

search graph using A

• DASP finds and uses a minimal action set at each planning
epsiode except for the first 12 planning episodes

• Restricted action set:

hand-coded set of minimal actions for each game

Experimental Result: acquired minimal action set

D
A

S
P

 (
jit

te
re

d)

default action set
(=18 actions)

• DASP is a binary classifier: to prune or not to prune
• Most of the actions are only conditionally effective

1.FIRE action may be useful only if the agent has a sword or a bomb.

Such actions may be preemptively pruned before encountering a
context it becomes useful. DASP only guarantees that the action set
reproduce search graphs of previous planning episodes.

2.LEFT action may be meaningless if there is a wall on the left of the
agent

DASP may not prune conditionally ineffective actions

→Should prune actions in the context of the current planning episode !

Problem of DASP

• Goal: Find actions which are useful in the planning episode
• Let p(a, t) be the ratio of new nodes action a generated at t-th

planning episode.
• From p(a, t) we estimate p*(a, t): probability of action a generating a

new node at t+1-th planning episode.

• At t-th planning episode, for each node expansion, agent applies
action a with probability P(a, t)

where s is a smoothing function (e.g. sigmoid),
ε is a minimal probability to apply action a.

Dominated action sequence avoidance (DASA)

p *(a ,0)=1

p *(a , t+1)=
p(a , t)+α p *(a , t)

1+α

P(a ,t)=(1−ϵ)s(p *(a ,t))+ϵ

• Compared scores achieved on 53 games in the ALE
• Applied DASP and DASA to breadth-first search variants

• p-IW(1) (Shleyfman et al. 2016), IW(1) (Lipovetzky et al. 2012),
BrFS (breadth-first search)

• Limited the number of node generation per planning episode to 2000
 (excluding “reused” nodes generated in previous planning episode)

● DASA2: DASA applied to action sequence of length = 2
● DASA1: DASA applied to action sequence of length = 1
● DASP1: DASP applied to action sequence of length = 1
● default: Use all available actions in the ALE (18 actions)
● restricted: A minimal action set required to solve the game

(hard-coded by a human for each game)

Experimental Evaluation

Experimental result: Score

• DASA2 had the best coverage for all five settings
• p-IW(1) (400gend) configuration:

• Limited the number of node generation to 400.
DASA2 outperformed the other methods.

• p-IW(1) (extend) configuration:
• Added two spurious buttons with no effect.

DASA2 outperformed the other methods.

Coverage = #Games where each method (column) scored the best
 among the methods (in each row/configuration)

DASA2 DASA1 DASP1 default restricted

p-IW(1) 22 10 4 6 10

p-IW(1)
(400gend) 24 14 6 5 7

IW(1) 22 9 7 7 8

BrFS 18 11 11 6 11
p-IW(1)
(extend)

39 22 19 16 -

Experimental Results: Depth of the search

Expanded = the average number of node expansion
Depth = the depth of the search tree

DASA2 DASA1 DASP1 default restricted

Expanded 254.9 191.1 119.9 119.6 234.0

Depth 82.8 59.5 34.6 34.1 40.8

• Compared the number of node expansion and the depth of the
search tree using p-IW(1)

• The result indicates that DASA2 is successfully exploring larger
and deeper state-space

Conclusion

• Proposed DASP and DASA, methods to avoid redundant actions in
Black-box Domain

• We experimentally evaluated DASP and DASA in the ALE
• Showed that by avoiding redundant actions an agent can search

deeper and achieved higher score

Lesson:
• Avoiding redundant action sequences avoids generating duplicate

states, a bottleneck in simulation-based black-box domains

Future Work
• Apply DASA in RL (currently working on this)
• Extract more information from the domain

Appendix slides

• Pruned many actions (#available action = 18)
• Restricted action set: a minimal action set required

(hard-coded by a human for each game)

Experimental Result: number of pruned actions

DASA2

IW(1) Example: Tick­Tack­Toe

novelty = 1

IW(1) Example: Tick­Tack­Toe

novelty = 1

novelty = 1

IW(1) Example: Tick­Tack­Toe

novelty = 1

novelty = 1

novelty = 1novelty = 1

IW(1) Example: Tick­Tack­Toe

novelty = 1

novelty = 1

novelty = 1

novelty = 1

IW(1) Example: Tick­Tack­Toe

novelty = 1

novelty = 1

novelty = 1

novelty = 1

novelty = 2

IW(1) Example: Tick­Tack­Toe

novelty = 1

novelty = 1

novelty = 1

novelty = 1

novelty = 2

• Aggressive pruning strategy

