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Introduction to Minimum Bayes Risk Decoding

Decoding Matters More than You Think!
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Introduction to Minimum Bayes Risk Decoding

Q1. Question Time! 
What is He?

A. Dog
B. Cat
C. Owl
D. Bear

If you know him pretend that you don’t
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Problem: Text Generation
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Many NLP Tasks Involve Text Generation

“A black cat.”

“A black cat.”黑猫

Image

Captioning

translation

x

x

h

h
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“A black cat.”

“A black cat.”黑猫

Image

Captioning

translation

x

x

h

h

contextoutput

= sequence of tokens

Many NLP Tasks Involve Text Generation
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Given a context x and a model Pmodel, 
generate a desired output

Text Generation Problem

?

x h
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Given a context x and a model Pmodel, 
generate a desired output

Text Generation Problem

?

x h

→ This process is called decoding!

…but what is desired output?
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Introduction to Minimum Bayes Risk Decoding

Q2. Question Time! 
If we had a PERFECT language model that exactly captures         , , 
would the text generation problem be considered solved?

A. Yes - text generation is trivial with a perfect model.

B. Mostly yes - rare edge cases may exist.

C. No - there are many other aspects to consider.

D. It can never be perfect so the question has no point.
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Q2. Question Time! 

Hint is…

If we had a PERFECT language model that exactly captures         , 
would the text generation problem be considered solved?

A. Yes - text generation is trivial with a perfect model.

B. Mostly yes - rare edge cases may exist.

C. No - there are many other aspects to consider.

D. It can never be perfect so the question has no point.
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Okay, it’s time to think about Him!

What is He?

A. Dog
B. Cat
C. Owl
D. Bear
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Maximum-a-posteriori (MAP) Decoding

What is He?

A. Dog
B. Cat
C. Owl
D. Bear

MAP decoding 

(estimate) selects the 

most probable option

(i.e. highest probability)
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Why MAP Wouldn’t be Perfect?
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Why MAP Wouldn’t be Perfect?

If it’s actually a cat/dog/owl, it may not be a big problem, but…
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Introduction to Minimum Bayes Risk Decoding

If it’s actually a cat/dog/owl, it may not be a big problem, but…
What if he’s a baby bear with an angry mom behind him?

Why MAP Wouldn’t be Perfect?
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Why MAP Wouldn’t be Perfect?

→ Risk is not considered

If it’s actually a cat/dog/owl, it may not be a big problem, but…
What if he’s a baby bear with an angry mom behind him?
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You Have Multiple Options even with a Perfect Probability Model 

Question should be what you would do
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bear

Question should be what you would do
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You Have Multiple Options even with a Perfect Probability Model 

A. Pet it!
○ It is most likely a cat

B. Pull back the kid and take a closer look
○ Most likely a cat but it might be a 

bear
C. Ruuuuun!!!

○ Worst case, it might be a bear!

Question should be what you would do
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→ Maximum-a-

posteriori (MAP)

→ Bayes risk

minimization

(MBR)

→ Minimax

You Have Multiple Options even with a Perfect Probability Model 

A. Pet it!
○ He is most likely a cat

B. Pull back the kid and take a closer look
○ Most likely a cat but it might be 

some wild animal
C. Ruuuuun!!!

○ There is a chance he is a bear

Question should be what you would do
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Q2. Question Time! 
If we had a PERFECT language model that exactly captures         , , 
would the text generation problem be considered solved?

A. Yes - text generation is trivial with a perfect model.

B. Mostly yes - rare edge cases may exist.

C. No - there are many other aspects to consider.

D. It can never be perfect so the question has no point.
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Q2. Question Time! 
If we had a PERFECT language model that exactly captures         , , 
would the text generation problem be considered solved?

A. Yes - text generation is trivial with a perfect model.

B. Mostly yes - rare edge cases may exist.

C. No - there are many other aspects to consider.

D. It can never be perfect so the question has no point.

How you ACT given the probability estimate is up to you
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Q2. Question Time! 
If we had a PERFECT language model that exactly captures         , , 
would the text generation problem be considered solved?

A. Yes - text generation is trivial with a perfect model.

B. Mostly yes - rare edge cases may exist.

C. No - there are many other aspects to consider.

D. It can never be perfect so the question has no point.

But can’t we think of  a ”language model” that takes into account of 
human preference?
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“Language Model” with Human Preference

But can’t we think of  a ”language model” that takes into account of 
human preference? Yes. Reinforcement learning.
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Q1. Question Time! 
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What is He?

A. Dog
B. Cat 
C. Owl
D. Bear

He is Atchoum
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What is He?

A. Dog
B. Cat 
C. Owl
D. Bear

Image from 

https://www.atchoumthecat.com/

He is Atchoum
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A. Pet it!
○ He is most likely a cat

B. Pull back the kid and take a closer look
○ Most likely a cat but it might be 

some wild animal
C. Ruuuuun!!!

○ There is a chance he is a bear
→ Minimax

You Have Multiple Options even with a Perfect Probability Model 

→ Maximum-a-

posteriori (MAP)

→ Bayes risk

minimization

(MBR)

Question should be what you would do
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Algorithm: Minimum Baye Risk Decoding
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Procedure of Minimum Bayes Risk (MBR) Decoding (Kumar+ ‘04, Eikema+ ‘20)

A cat

A face of 

a black cat

A black 

kitten

A cat with 

brown eyes

My cute little 

kitty

A black cat

1. Sample outputs randomly

Prompt: “What’s in the picture?”
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1. Sample outputs randomly

2. Estimate the utility between the outputs using a function
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1. Sample outputs randomly

2. Estimate the utility between the outputs using a function

A cat

A face of 

a black cat

A black 

kitten

A cat with 

brown eyes

My cute little 

kitty

A black cat

Prompt: “What’s in the picture?”

Procedure of Minimum Bayes Risk (MBR) Decoding (Kumar+ ‘04, Eikema+ ‘20)

= - risk
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A cat

A face of 

a black cat

A black 

kitten

A cat with 

brown eyes

My cute little 

kitty

A black cat

Selected output

1. Sample outputs randomly

2. Estimate the utility between the outputs using a function

3. Select the output that maximizes the average utility to the others

Prompt: “What’s in the picture?”

Procedure of Minimum Bayes Risk (MBR) Decoding (Kumar+ ‘04, Eikema+ ‘20)
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a black cat
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A cat

A face of 

a black cat

A black 

kitten

A cat with 

brown eyes

My cute little 

kitty

A black cat

Selected output

Assuming the generated samples are the possible “true answers”,

minimize the average risk over them

Prompt: “What’s in the picture?”

Interpretation of MBR Decoding
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Using better utility function results in better generation

Utility Function Matters!

Freitag et al., TACL 2022
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Sampling Algorithm Matters!

Ohashi et al., NAACL 2024
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Applications of MBR Decoding
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MBR Decoding for Machine Translation

Wu et al., WMT 2024Rei et al., WMT 2024

Many submissions to WMT’24 use MBR Decoding
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MBR Decoding for Machine Translation

MBR Decoding is better than beam search

Beam 

Search

MBR 

decoding

Freitag et al., TACL 2022
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MBR with Chain-of-Thought a.k.a. Self-Consistency

Wang et al. ICLR 2023
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MBR for Distillation from Teacher LLM

Wang et al. SSI-FM ICLR 2025
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MBR for Self-Distillation

Wu et al. ICLR 2025
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Why does MBR Decoding Work?
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A cat

A face of 

a black cat

A black 

kitten

A cat with 
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My cute little 

kitty

A black cat

Selected output

1. Sample outputs randomly

2. Estimate the utility between the outputs using a function

3. Select the output that maximizes the average utility to the others

Prompt: “What’s in the picture?”

Procedure of Minimum Bayes Risk (MBR) Decoding (Kumar+ ‘04, Eikema+ ‘20)
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Why does MBR Decoding Work?
MBR Decoding only need finite samples (e.g., 100) to 

surpass the performance of beam search (state-of-the-

art) whereas the number of possible sequences is infinite.

Beam 

Search

MBR 

decoding

Freitag et al., TACL 2022
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Hypothesis: MBR decoding is a Convolutional Filter

https://suzyahyah.github.io/bayesian%20inference/machine%20translation/2022/02/15/mbr-decoding.html
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Hypothesis: MBR decoding is a Convolutional Filter

https://suzyahyah.github.io/bayesian%20inference/machine%20translation/2022/02/15/mbr-decoding.html

So far I could not find evidence

- MBR decoding only using k-neighbors did not improve over MBR
- Neighbors of the MBR output do not always have high probability
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Which objective functions are easier to optimize, MAP or MBR?

- With large enough number of samples, MBR is likely to be better

Minimum Bayes Risk Decoding Minimizes Bayes Risk (Ichihara et al., ACL 2025)

under assumptions
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MBR decoding converges to the optimal solution with high probability at a rate of 
O(1/√n) where n is the number of samples

Minimum Bayes Risk Decoding Minimizes Bayes Risk (Ichihara et al., ACL 2025)

under assumptions

Beam 

Search

MBR 

decoding

Freitag et al., TACL 2022
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MBR Decoding as a Medoid Identification Problem (Jinnai&Ariu, Findings 2024)

A cat

A face of 

a black cat

A black 

kitten

A cat with 

brown eyes

My cute little 

kitty

A black cat

Selected output
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MBR Decoding as a Medoid Identification Problem (Jinnai&Ariu, Findings 2024)

This entails that there exists an 
approximation
algorithm with O(n log n)
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MBR Decoding as a Noisy Signal Decoding

Encoding Channel

Noise

Decoding

Hello! こんにちは!

Random sampling has no bias but high variance

Noise (variance) can be ignored by sample-and-aggregate strategy

Language 

model
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Why does MBR Decoding Work?
MBR Decoding only need finite samples (e.g., 100) to 

surpass the performance of beam search (state-of-the-

art) whereas the number of possible sequences is infinite.

Still an open question!
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Open Problems
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- Information density, surprisal, exposure bias…
- These theories are often mentioned to explain why MAP decoding fails
- Does it explain why MBR decoding is good?

e.g. The uniform information density hypothesis claims that human prefers 
to distribute information uniformly

MBR x Computational Linguistics

Native English speakers don’t want to omit this “that”
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- pfnet/plamo-2-translate is available for research!
- But not for me… :(

- pfnet/plamo-2-translate-eval is a pairwise evaluation model which 
may be used in a different way than MBR decoding

MBR for En-Ja, Ja-En Translation
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MBR Decoding is 10-100 times more slower than beam search

Possible solutions

- Faster computation of utility function (e.g., Cheng&Vlachos, EMNLP 2023)

- Efficient use of autoregressive model
- e.g. Speculative decoding (e.g., Sun et al., NeurIPS 2025)

- Efficient sampling
- Non-iid sampling algorithm?

Faster Inference: MBR Decoding is SLOW
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Summary

Decoding Matters More than You Think!

Questions:  jinnai_yu@cyberagent.co.jp
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Where Should I Start?

Starter kit for MBR decoding

- Sampling-Based Approximations to Minimum Bayes Risk Decoding for Neural Machine Translation

(Eikema & Aziz, EMNLP 2022)

- High Quality Rather than High Model Probability: Minimum Bayes Risk Decoding with Neural Metrics

(Freitag et al., TACL 2022)

- Minimum Bayes-Risk Decoding for Statistical Machine Translation (Kumar & Byrne, NAACL 2004)

Implementations (Library)

- https://github.com/naist-nlp/mbrs

- https://github.com/ZurichNLP/mbr

https://aclanthology.org/2022.emnlp-main.754/
https://aclanthology.org/2022.tacl-1.47/
https://aclanthology.org/N04-1022/
https://github.com/naist-nlp/mbrs
https://github.com/ZurichNLP/mbr
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