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ABSTRACT

While many skill discovery methods have been proposed to accelerate learning
and planning, most are heuristic methods without a clear relationship to the agent’s
objective. The conditions under which the algorithms are effective is therefore
often unclear. We claim that we should pursue skill discovery algorithms with
explicit relationships to the objective of the agent to understand in what scenarios
skill discovery methods are useful. We summarize the analysis on two scenarios,
planning and reinforcement learning by Jinnai et al. (2019a;b), and show how to
identify skill discovery criteria that directly address the relevant objectives. For
planning, we show that finding a set of options that minimizes planning time is
NP-hard, and give a polynomial-time algorithm that is approximately optimal un-
der certain conditions. For reinforcement learning, we target goal-based tasks with
sparse rewards—specifically, where the agent only receives useful reward signals
at the goal state. We show that the difficulty of discovering a distant rewarding
state in an MDP is bounded by the expected cover time of a random walk over
the graph induced by the MDP’s transition dynamics. We therefore propose an
algorithm which finds an option which provably reduces the expected cover time.

1 INTRODUCTION

An appropriate set of skills, or temporally extended actions, can significantly improve the perfor-
mance of an agent in many scenarios (Sutton et al., 1999). Thus, many heuristic algorithms have
proposed to discover skills based on intuitive descriptions of useful skills (Iba, 1989; McGovern &
Barto, 2001; Menache et al., 2002; Stolle & Precup, 2002; Şimşek & Barto, 2004; Şimşek et al.,
2005; Şimşek & Barto, 2009; Konidaris & Barto, 2009; Machado et al., 2017; Eysenbach et al.,
2019). While empirical results show that these algorithms are useful in some scenarios, the condi-
tions under which the methods are effective is often unclear because the relationship between the
objective of the skill discovery algorithm and that of the agent is often not established. In fact, Jong
et al. (2008) sought to investigate the utility of skills empirically and pointed out that introducing
skills might worsen the learning performance.

In order to discover options that are guaranteed to be useful, we claim that we should develop skill
discovery algorithms with an explicit connection to the objective of the agent. This allows us to
analytically evaluate the performance of the skill discovery algorithms instead of relying solely on
empirical evaluations on benchmark tasks.

We summarize our recent work on two scenarios, planning and reinforcement learning (Jinnai et al.,
2019a;b). We show that by explicitly targeting the objective function of the agent, it is possible
to derive new skill discovery algorithms with a guarantee on how much the algorithms improve
the agent’s objective. For planning, we show that the task of finding an option set that minimizes
planning time is NP-hard and we provide an approximate algorithm with performance guarantees
under certain conditions. For reinforcement learning, we show that minimizing the expected cover
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time—the number of steps required for a random walk to visit every state Broder & Karlin (1989)—
reduces the expected number of steps required to reach an unknown rewarding state. We introduce
an option discovery method that explicitly aims to minimize the expected cover time and show that
the algorithm provably reduces it.

2 OBJECTIVE FUNCTIONS FOR SKILL DISCOVERY

We describe our approach to two objectives: planning and exploration in reinforcement learning.
We show that by explicitly targeting the appropriate objective, we can derive new skill discovery
algorithms with theoretical performance guarantees.

2.1 FINDING OPTIONS THAT MINIMIZE PLANNING TIME

First, we consider planning with the value iteration algorithm. We formalize what it means to find
the set of options that is optimal for planning. More precisely, we consider the problem of finding a
subset of options from a candidate set of options so that planning converges within a given iteration
limit:

Definition 1 MOMI (MinOptionMaxIteration):
Given an MDP M = (S,A, R, T, γ), a non-negative real-value ε, a candidate option set O′,
and an integer `, return O minimizing |O| subject to L(O) ≤ ` and O ⊆ O′, where L(O) is
the number of value iteration passes to solve the MDP using the option set O.

MOMI has the following complexity results:

Theorem 1.

1. MOMI is Ω(log n) hard to approximate even for deterministic MDPs unless P = NP.
2. MOMI is 2log

1−ε n-hard to approximate for any ε > 0 even for deterministic MDP unless
NP ⊆ DTIME(npoly logn).

Here we describe the outline of the proof (see the Appendix for the full description). The proof is
by reduction from the label cover and the set cover problem respectively to a special case of the
problem where the set of options are constrained to be point options. A point option is a type of
option which has exactly one state in initiation set and one state with termination probability set to
one. Even for this limited setting, finding a set of point options is 2log

1−ε n-hard to approximate,
and Ω(log n)-hard to approximate even for deterministic tasks. As we showed inapproximability for
this special case, MOMI is also NP-hard to approximate. Thus, finding an optimal set of options for
planning is NP-hard in general.

This inapproximability result suggest that efficient option discovery algorithms for planning only
exist in a more restricted settings than the above cases. We now present a polynomial-time algorithm
A-MOMI for approximately computing the optimal set of point options for tasks with bounded
return and goal states:

1. Compute d : S × S → Z≥0 for every state pair where d is the number of iterations for si
to reach ε-optimal if we add a point option from sj to g, minus one.

2. For every state si, compute a set of states Xsi within `− 1 distance of reaching si. The set
Xsi represents the states that converge within ` steps if we add a point option from si to g.

3. Let X be a set of Xsi for every si ∈ S \ X+
g , where X+

g is a set of states that converges
within ` without any options (and thus can be ignored).

4. Solve the set-cover optimization problem to find a set of subsets that covers the entire state
set using the approximate algorithm by Chvatal (1979). This process corresponds to finding
a minimum set of subsets {Xsi} that makes every state in S converge within ` steps.

5. Generate a set of point options with initiation states set to one of the center states in the
solution of the set-cover, and termination states set to the goal.

The algorithm has the following properties:

Theorem 2.
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Figure 1: (a)–(d) Comparison of the optimal point options with options generated by the approxima-
tion algorithm. The green square represents the termination state and the blue squares the initiation
states. Observe that the approximation algorithm is similar to that of optimal options. Note that
the optimal option set is not unique: there can be multiple optimal option sets, and we are visual-
izing just one returned by the solver. We are only able to find optimal solutions up to 8 iterations
for MOMI and four options for MIMO within 10 minutes. (e)–(f) Figures show the number of op-
tions generated by A-MOMI and A-MIMO. OPT: an optimal set of options. APPROX: a bounded
suboptimal set of options generated by A-MIMO an A-MOMI. BET: betweenness options. EIG:
eigenoptions.

1. A-MOMI runs in polynomial time.
2. It guarantees that the MDP is solved within ` iterations using the option set acquired by

A-MOMI.
3. If the MDP is deterministic, the option set is at mostO(log n) times larger than the smallest

option set that solves the MDP within ` iterations.

See the Appendix for the proof.

We also consider MIMO, the complementary problem of finding a set of k options that minimize the
number of iterations until convergence. The problem is also NP-hard and exists a polynomial-time
approximate algorithm, A-MIMO. See the Appendix for the proof.

We empirically evaluated the performance of the approximate algorithms against the optimal option
set and two heuristic approaches for option discovery, betweenness options (Şimşek & Barto, 2009)
and eigenoptions (Machado et al., 2017) in simple grid-world tasks. The results indicate that the
approximation algorithm is on par with other heuristic algorithms. While heuristic algorithms have
no theoretical performance guarantees (e.g. betweenness options are not necessarily helpful when
the task has no bottleneck states), our algorithm offers a performance guarantee in any domain.

2.2 FINDING OPTIONS THAT MINIMIZE LEARNING TIME FOR HARD EXPLORATION TASKS

We now consider reinforcement learning tasks, where the environment model is not available. In
particular, we consider how options can improve exploration in goal-based tasks with sparse reward.
We model the initial exploratory behavior of a reinforcement learning agent in a sparse reward task
by a random walk induced by a fixed stationary distribution. This is because (1) it is a reasonable
model for an agent with no prior knowledge of the task and (2) it serves as a worst-case analysis: it
is reasonable to assume that efficient exploration algorithms explore faster than the random policy.
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We aim to minimize the time required by an agent to explore the task. More precisely, we aim to
minimize the expected cover time: the expected number of steps required for a random walk to visit
all the vertices in a graph (Broder & Karlin, 1989). The expected cover time quantifies how quickly
a random walk reaches to a rewarding state.
Theorem 3. Assume a stochastic shortest path problem to reach a goal state g ∈ S where a non-
positive reward rc ≤ 0 is given for non-goal states and γ = 1. Let P be a random walk transition
matrix: P (s, s′) =

∑
a∈A π(s)T (s, a, s′):

∀g : V πg (s) ≥ rcE[C(G)],

where C(G) is the expected cover time of the graph G.

See the Appendix for the proof. The theorem suggests that the smaller the expected cover time, the
easier exploration tends to be. Now the question is how to reduce the expected cover time of the
random walk without prior information about the task.

We now present covering options, an algorithm which discovers options that minimize the expected
cover time. The algorithm is approximate since the problem of finding such a set of options is com-
putationally intractable; even a good solution is hard to find due to the Braess’s paradox (Braess,
1968; Braess et al., 2005), which states that the expected cover time does not monotonically de-
crease as edges are added to the graph. Thus, expected cover time is often minimized indirectly
via maximizing algebraic connectivity (Fiedler, 1973; Chung, 1996). The expected cover time is
upper bounded by a quantity involving the algebraic connectivity, and by maximizing it the bound
can be minimized (Broder & Karlin, 1989). As adding a set of edges to maximize the algebraic
connectivity is still NP-hard (Mosk-Aoyama, 2008), we use the approximation method by Ghosh &
Boyd (2006):

1. Compute the second smallest eigenvalue and its corresponding eigenvector (i.e., the Fiedler
vector) of the Laplacian L of the state transition graph G.

2. Let vi and vj be the state with largest and smallest value in the eigenvector respectively.
Generate two point options; one with I = {vi} and β = {vj} and the other with I = {vj}
and β = {vi}.

3. Set G← G ∪ {(vi, vj)} and repeat the process until the number of options reaches k.

The algorithm is guaranteed to reduce the upper bound of the expected cover time:
Theorem 4. Assume that a random walk induced by a policy π is a uniform random walk and the
multiplicity of the second smallest eigenvalue of L is one. Adding the two options identified by the
algorithm improves the upper bound of the cover time:

E[C(G′)] ≤ n2 lnn

λ2(L) + F
(1 + o(1)), (1)

where E[C(G′)] is the expected cover time of the resulting random walk, F =
(vi−vj)2

6/(λ3−λ2)+3/2 , vi, vj
are the maximum and minimum values of the Fiedler vector, and λ2 is the second smallest eigenvalue
of L, and n is the number of states. If the multiplicity of the second smallest eigenvalue is greater
than one, then adding any single option cannot improve the bound.

See the Appendix for the proof. Note that the procedure is similar to eigenoptions, proposed by
Machado et al. (2017). Both algorithms use the eigenvectors of the Laplacian matrix to generate
options. While eigenoptions have no performance guarantees, by explicitly targeting an objective
we are able to derive a lower bound on improving the expected cover time and also achieve better
empirical performance (Fig 2). Table 2a shows our preliminary results on comparing the expected
cover time on simple tabular domains. Our algorithm successfully generates a set of options which
reduce the cover time more than eigenoptions (Machado et al., 2017). In addition, covering options
is fast to compute as it only needs to compute the Fiedler vector. Although computing the whole
graph spectrum is a computationally complex matrix operation, the Fiedler vector can be computed
efficiently even for very large graphs (Koren et al., 2002).

We now evaluate the utility of each type of discovered options when learning. We used Q-learning
(Watkins & Dayan, 1992) (α = 0.1, γ = 0.95) for 100 episodes of 100 timesteps each and gen-
erated 8 options with each algorithms using the adjacency matrix representing the state-transition
of the MDP. Figure 2 shows the comparison of accumulated rewards averaged over 5 runs. In all
experiments, covering options outperformed or was on par with eigenoptions.
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fourroom λ2 Cover Time
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Eigenoptions 0.054 695.9
No options 0.023 1094.8
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Figure 2: (a) Comparison of the algebraic connectivity and the expected cover time. For covering
options and eigenoptions we add 8 options. (b)–(c) Comparison of performance with different option
generation methods. Options are generated offline from the adjacency matrix for four-room and
9x9grid. Reward information is not used for generating options.

3 RELATED WORK

While many option discovery algorithms are heuristic, a few have proposed methods with well-
defined objectives.

Several works have proposed learning the policy and the termination condition of the option by gra-
dient descent using the observed rewards (Mankowitz et al., 2016; Bacon et al., 2017; Harb et al.,
2018). Bacon et al. (2017) proposed the option-critic framework and generated options which di-
rectly minimize the expected accumulative reward (i.e. the objective of the agent). Harb et al. (2018)
proposed to generate options which minimize the sum of expected accumulative reward and the de-
liberation cost (Simon, 1957) using the option-critic framework (Bacon et al., 2017). The method
successfully sped up the learning time by taking into account of the deliberation cost to prefer op-
tions with long duration. However, as they require the reward information, options discovered are
task-dependent. Eysenbach et al. (2019) proposed to learn a policy for each option so that the diver-
sity of the trajectories by the set of options are maximized. The method seeks to generate options
to explore infrequently visited states. Several works have proposed an architecture to learn goal-
conditioned policies (i.e. options) to reach certain subgoal states Vezhnevets et al. (2017); Nachum
et al. (2018); Levy et al. (2019). They showed that the method can speed up the learning even in
long-horizon problems by discovering short horizon subgoals automatically. Brunskill & Li (2014)
targeted the lifelong reinforcement learning setting and proposed an option generation method for
lifelong reinforcement learning. They analyzed the sample complexity of RMAX using options and
proposed an option discovery targeting to minimize the sample complexity. Solway et al. (2014)
formalized an optimal behavioral hierarchy as a model which fits the behavior of the agent in tasks
the best.

Mann et al. (2015) analyzed the convergence rate of approximate value iteration with and without
options and showed that options lead to faster convergence if their durations are longer and the value
function is initialized pessimistically. As in reinforcement learning, how to find efficient temporal
abstractions for planning automatically remains an open question.

4 CONCLUSIONS

We analyzed two scenarios, planning and reinforcement learning. For planning, we considered the
problem of minimizing the size of the option set given a maximum number of iterations (MOMI)
and showed that the problem is computationally intractable. We described a polynomial-time ap-
proximate algorithm for solving MOMI under certain conditions. For reinforcement learning, we
proposed covering options and showed that it has a guarantee on how much it improves the expected
cover time of a random walk. These theoretical guarantees are available because the skill discovery
algorithms are directly tailored to the objective of the agent.
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1 FINDING OPTIONS THAT MINIMIZE PLANNING TIME

Theorem 1.

1. MOMI is Ω(log n) hard to approximate even for deterministic MDPs unless P = NP.

2. MOMI is 2log1−ε n-hard to approximate for any ε > 0 even for deterministic MDP unless
NP ⊆ DTIME(npoly logn).

Proof. First, we show Theorem 4.1 by a reduction from the set cover problem to MOMI with deter-
ministic MDP. We consider two computational problems:

1. MINOPTIONMAXITER (MOMI): Which set of options let value iteration converge in at
most ` iterations?

2. MINITERMAXOPTION (MIMO): Which set of k or fewer options minimizes the number
of iterations to convergence?

More formally, MOMI is defined as follows.

Definition 1 MOMI: The MINOPTIONMAXITER problem:
Given an MDP M , a non-negative real-value ε, and an integer `, returnO that minimizes |O|
subject to O ⊆ Op and L(O) ≤ `.

We consider a problem OI-DEC which is a decision version of MOMI and MIMO. The problem
asks if we can solve the MDP within ` iterations using at most k point options.

Definition 2 OI-DEC:
Given an MDP M , a non-negative real-value ε, and integers k and `, return ‘Yes’ if the there
exists an option set O such that O ⊆ Op, |O| ≤ k and L(O) ≤ `. ‘No’ otherwise.

We prove the theorem by reduction from the decision version of the set-cover problem—known to
be NP-complete—to OI-DEC. The set-cover problem is defined as follows.

Definition 3 SetCover-DEC:
Given a set of elements U , a set of subsets X = {X ⊆ U}, and an integer k, return ‘Yes’ if
there exists a cover C ⊆ X that

⋃
X∈C X = U and |C| ≤ k. ‘No’ otherwise.
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u1 u2 u3 u4 u5

X1 X2

X ′1 X ′2

g

Figure 1: Reduction from SetCover-DEC to OI-DEC. The example shows the reduction from an
instance of SetCover-DEC which asks if we can pick two subsets from X = {X1, X2} where
X1 = {1, 2, 3}, X2 = {3, 4, 5} to cover all elements U = {1, 2, 3, 4, 5}. The SetCover-DEC can
be reduced to an instance of OI-DEC where the question is whether the MDP can be solved with 2
iterations of VI by adding at most two point options. The answer of OI-DEC is ‘Yes’ (adding point
options fromX1 andX2 to g will solve the problem), thus the answer of the SetCover-DEC is ‘Yes’.
Here the set of initial states corresponds to the cover for the SetCover-DEC.

If there is some u ∈ U that is not included in at least one of the subsets X , then the answer is ‘No’.
Assuming otherwise, we construct an instance of a shortest path problem (a special case of an MDP
problem) as follows (Figure 1). There are four types of states in the MDP: (1) ui ∈ U represents one
of the elements in U , (2) Xi ∈ X represents one of the subsets in X , (3) X ′i ∈ X ′: we make a copy
for every state Xi ∈ X and call them X ′i , (4) a goal state g. Thus, the state set is U ∪X ∪X ′ ∪ {g}.
We build edges between states as follows: (1) e(u,X) ∈ E iff u ∈ X: For u ∈ U and X ∈ X , there
is an edge between u and X . (2) ∀Xi ∈ X , e(Xi, X

′
i) ∈ E: For every Xi ∈ X , we have a edge

from Xi to X ′i . (3) ∀e(X ′, g) ∈ E: for every X ′ ∈ X ′i we have a edge from Xi to the goal g. This
construction can be done in polynomial time.

Let M be the MDP constructed in this way. We show that SetCover(U ,X , k) = OI-DEC(M,k, 2).
Note that by construction every state si, s′i, and g converges to its optimal value within 2 iterations
as it reaches the goal state g within 2 steps. A state u ∈ U converges within 2 steps if and only if
there exists a point option (a) from X to g where u ∈ X , (b) from u to X ′ where u ∈ X , or (c)
from u to g. For options of type (b) and (c), we can find an option of type (a) that makes u converge
within 2 steps by setting the initial state of the option to Io = X , where u ∈ X , and the termination
state to βo = g. Let O be the solution of OI-DEC(M,k, 2). If there exists an option of type (b)
or (c), we can swap them with an option of type (a) and still maintain a solution. Let C be a set of
initial states of each option in O (C = {Io|o ∈ O}). This construction exactly matches the solution
of the SetCover-DEC.

For Theorems 4.2 and 4.3 we reduce our problem to the Min-Rep, problem, originally defined by
Kortsarz (2001). Min-Rep is a variant of the better studied label cover problem ? and has been
integral to recent hardness of approximation results in network design problems ??. Roughly, Min-
Rep asks how to assign as few labels as possible to nodes in a bipartite graph such that every edge
is “satisfied.”

Definition 4 Min-Rep:
Given a bipartite graph G = (A∪B,E) and alphabets ΣA and ΣB for the left and right sides
of G respectively. Each e ∈ E has associated with it a set of pairs πe ⊆ ΣA × ΣB which
satisfy it. Return a pair of assignments γA : A → P(ΣA) and γB : B → P(ΣB) such that
for every e = (Ai, Bj) ∈ E there exists an (a, b) ∈ πe such that a ∈ γA(Ai) and b ∈ γB(Bj).
The objective is to minimize

∑
Ai∈A |γA(Ai)|+

∑
Bj∈B |γB(Bj)|.

We illustrate a feasible solution to an instance of Min-Rep in Figure 2.

The crucial property of Min-Rep we use is that no polynomial-time algorithm can approximate
Min-Rep well. Let ñ = |A|+ |B|.
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A1

A2

B1

B2

(a1, b2)

(a
2 , b

3 ), (a
3 , b

1 )

(a3, b1)

a1, a2

a3

b2

b1, b3

Figure 2: An instance of Min-Rep with ΣA = {a1, a2, a3} and ΣB = {b1, b2, b3}. Edge e is labeled
with pairs in πe. Feasible solution (γA, γb) illustrated where γA(Ai) and γB(Bj) below Ai and Bj
in blue. Constraints colored to coincide with stochastic action colors in Figure 3.

Lemma 1 (Kortsarz 2001). Unless NP ⊆ DTIME(npoly logn), Min-Rep admits no 2log1−ε ñ

polynomial-time approximation algorithm for any ε > 0.

As a technical note, we emphasize that all relevant quantities in Min-Rep are polynomially-bounded.
In Min-Rep we have |ΣA|, |ΣB | ≤ ñc

′
for constant c′. It immediately follows that

∑
e |πe| ≤ nc for

constant c.

1.1 HARDNESS OF APPROXIMATION OF MOMI WITH DETERMINISTIC MDP

Theorem 4.1 Proof. The optimization version of the set-cover problem cannot be approximated
within a factor of c·lnn by a polynomial-time algorithm unless P = NP ?. The set-cover optimization
problem can be reduced to MOMI with a similar construction for a reduction from SetCover-DEC to
OI-DEC. Here, the targeted minimization values of the two problems are equal: P (C) = |O|, and the
number of states in OI-DEC is equal to the number of elements in the set cover on transformation.
Assume there is a polynomial-time algorithm within a factor of c · lnn approximation for MOMI
where n is the number of states in the MDP. Let SetCover(U ,X ) be an instance of the set-cover
problem. We can convert the instance into an instance of MOMI(M, 0, 2). Using the approximation
algorithm, we get a solution O where |O| ≤ c lnn|O∗|, where O∗ is the optimal solution. We con-
struct a solution for the set cover C from the solution to the MOMI O (see the construction in the
proof of Theorem 1). Because |C| = |O| and |C∗| = |O∗|, where C∗ is the optimal solution for the
set cover, we get |C| = |O| ≤ c lnn|O∗| = c lnn|C∗|. Thus, we acquire a c · lnn approximation
solution for the set-cover problem within polynomial time, something only possible if P=NP. Thus,
there is no polynomial-time algorithm with a factor of c · lnn approximation for MOMI, unless
P=NP.

1.2 HARDNESS OF APPROXIMATION OF MOMI

We now show our hardness of approximation of 2log1−ε n for MOMI, Theorem 4.2.1

We start by describing our reduction from an instance of Min-Rep to an instance of MOMI. The
intuition behind our reduction is that we can encode choosing a label for a vertex in Min-Rep as
choosing an option in our MOMI instance. In particular, we will have a state for each edge in our
Min-Rep instance and reward will propagate quickly to that state when value iteration is run only if
the options corresponding to a satisfying assignment for that edge are chosen.

More formally, our reduction is as follows. Consider an instance of Min-Rep, MR, given by G =
(A ∪B,E), ΣA, ΣB and {πe}. Our instance of MOMI is as follows where γ = 1 and l = 3.2

• State space We have a single goal state Sg along with states S′g and S′′g . For each edge e
we create a state Se. Let SatA(e) consist of all a ∈ ΣA such that a is in some assignment

1We assume that O′ is a “good” set of options in the sense that there exists some set O∗ ⊆ O′ such that
L(O∗) ≤ `. We also assume, without loss of generality, that ε < 1 throughout this section; other values of ε
can be handled by re-scaling rewards in our reduction.

2It is easy to generalize these results to l ≥ 4 by replacing certain edges with paths.
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Sg

S′g

S′′g

Se1 S′e1a1 Se1a1 Se1b2 S′e1b2

Se2

S′e2a2 Se2a2

S′e2a3 Se2a3

S′e2b1Se2b1

S′e2b3Se2b3

Se3 S′e3a3 Se3a3 Se3b1 S′e3b1

Figure 3: Our MOMI reduction applied to the Min-Rep problem in Figure 2. e1 = (A1, B1),
e2 = (A1, B2), e3 = (A2, B2). Actions given in solid lines and each option in O′ represented in
its own color as a dashed line from initiation to termination states. Notice that a single option goes
from Se3b1 and Se2b1 to Sg .

in πe. Define SatB(e) symmetrically. For each edge e ∈ E we create a set of 2 · |SatA(e)|
states, namely Sea and S′ea for every a ∈ SatA(e). We do the same for b ∈ SatB(e).

• Actions and Transitions We have a single action from S′g to Sg , a single action from S′′g
to S′g . For each edge e we have the following deterministic actions: Every S′ea has a single
outgoing action to Sea for a ∈ SatA(e); Every Seb has a single outgoing action to Seb′ for
b ∈ SatB(e); Every Sea has an outgoing action to Seb if (a, b) ∈ πe and every S′eb has
a single outgoing action to Sg; Lastly, we have a single action from S′ea to S′′g for every
a ∈ SatA(e).

• Reward The reward of arriving in Sg is 1. The reward of arriving in every other state is 0.

• Option Set Our option set O′ is as follows. For each vertex Ai ∈ A and each a ∈ ΣA we
have an option O(Ai, a): The initiation set of this option is every Se where e is incident to
Ai; The termination set of this option is every Sea where Ai is incident to e; The policy
of this option takes the action from S′ea to Sea when in S′ea and the action from Se to S′ea
when in Se.
Symmetrically, for every vertex Bj ∈ B and each b ∈ ΣB we have an option O(Bj , b):
The initiation set of this option is every Seb where e is incident to Bj ; The termination set
of this option is Sg; The policy of this option takes the action from Seb to S′eb when in Seb
and from S′eb to Sg when in S′eb.

One should think of choosing option O(v, x) as corresponding to choosing label x for vertex v in
the input Min-Rep instance. Let MOMI(MR) be the MDP output given instance MR of Min-Rep
and see Figure 3 for an illustration of our reduction.

Let OPTMOMI be the value of the optimal solution to MOMI(MR) and let OPTMR be the value
of the optimal Min-Rep solution to MR. The following lemmas demonstrates the correspondence
between a MOMI and Min-Rep solution.

Lemma 2. OPTMOMI ≤ OPTMR

Proof. Given a solution (γA, γB) to MR, define OγA,γB := {O(v, x) : v ∈ V (G) ∧ (γA(v) =
x∨γB(v) = x)} as the corresponding set of options. Let γ∗A and γ∗B be the optimal solutions to MR
which is of cost OPTMR.
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We now argue that Oγ∗A,γ∗B is a feasible solution to MOMI(MR) of cost OPTMR, demonstrating
that the optimal solution to MOMI(MR) has cost at most OPTMR. To see this notice that by
construction the MOMI cost of Oγ∗A,γ∗B is exactly the Min-Rep cost of (γ∗A, γ

∗
B).

We need only argue, then, that Oγ∗A,γ∗B is feasible for MOMI(MR) and do so now. The value of
every state in MOMI(MR) is 1. Thus, we must guarantee that after 3 iterations of value iteration,
every state has value 1. However, without any options every state except each Se has value 1 after
3 iterations of value iteration. Thus, it suffices to argue that Oγ∗A,γ∗B guarantees that every Se will
have value 1 after 3 iterations of value iteration. Since (γ∗A, γ

∗
B) is a feasible solution to MR we

know that for every e = (Ai, Bj) there exists an ā ∈ γ∗A(Ai) and b̄ ∈ γ∗B(Bj) such that (ā, b̄) ∈ πe;
correspondingly there are options O(Ai, ā), O(Bj , b̄) ∈ Oγ∗A,γ∗B . It follows that, given options
Oγ∗A,γ∗B from, Se one can take option O(Ai, ā) then the action from Seā to Seb̄ and then option
O(Bj , b̄) to arrive in Sg; thus, after 3 iterations of value iteration the value of Se is 1. Thus, we
conclude that after 3 iterations of value iteration every state has converged on its value.

We now show that a solution to MOMI(MR) corresponds to a solution to MR. For the remainder
of this section γOA (Ai) := {a : O(Ai, a) ∈ O} and γOB (Bj) := {b : O(Bj , b) ∈ O} is the Min-Rep
solution corresponding to option set O.

Lemma 3. For a feasible solution to MOMI(MR), O, we have (γOA , γ
O
B ) is a feasible solution to

MR of cost |O|.

Proof. Notice that by construction the Min-Rep cost of (γOA , γ
O
B ) is exactly |O|. Thus, we need only

prove that (γOA , γ
O
B ) is a feasible solution for MR.

We do so now. Consider an arbitrary edge e = (Ai, Bj) ∈ E; we wish to show that (γOA , γ
O
B )

satisfies e. Since O is a feasible solution to MOMI(MR) we know that after 3 iterations of value
iteration every state must converge on its value. Moreover, notice that the value of every state in
MOMI(MR) is 1. Thus, it must be the case that for every Se there exists a path of length 3 from
Se to Sg using either options or actions. The only such paths are those that take an option O(Ai, a),
then an action from Sea to Seb then option O(Bj , b) where (a, b) ∈ πe. It follows that a ∈ γOA (Ai)
and b ∈ γOB (Bj). But since (a, b) ∈ πe, we then know that e is satisfied. Thus, every edge is satisfied
and so (γOA , γ

O
B ) is a feasible solution to MR.

Theorem 4.2 Proof. Assume NP 6⊆ DTIME(npoly logn) and for the sake of contradiction that there
exists an ε > 0 for which polynomial-time algorithm AMOMI can 2log1−ε n-approximate MOMI.
We use AMOMI to 2log1−ε′ ñ approximate Min-Rep for a fixed constant ε′ > 0 in polynomial-time,
thereby contradicting Lemma 1. Again, ñ is the number of vertices in the graph of the Min-Rep
instance.

We begin by noting that the relevant quantities in MOMI(MR) are polynomially-bounded. Notice
that the number of states n in the MDP in MOMI(MR) is at most O(ñ2|ΣA||ΣB |) = ñc for some
fixed constant c by the aforementioned assumption that ΣA and ΣB are polynomially-bounded in
ñ.3

Our polynomial-time approximation algorithm to approximate instance MR of Min-Rep is as fol-
lows: Run AMOMI on MOMI(MR) to get back option set O. Return (γOA , γ

O
B ) as defined above

as our solution to MR.

We first argue that our algorithm is polynomial-time in ñ. However, notice that for each vertex, we
create a polynomial number of states. Thus, the number of states in MOMI(MR) is polynomially-
bounded in ñ and soAMOMI runs in time polynomial in ñ. A polynomial runtime of our algorithm
immediately follows.

We now argue that our algorithm is a 2log1−ε′ ñ-approximation for Min-Rep for some ε′ > 0. Ap-
plying Lemma 3, the approximation of AMOMI and then Lemma 2, we have that (γOA , γ

O
B ) is a

3It is also worth noticing that since we create at most O(ñ|ΣA| + ñ|ΣB |) options, the total number of
options in O′ is at most polynomial in ñ.
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feasible solution for MR with cost

costMin-Rep(γOA , γ
O
B ) = |O|

≤ 2log1−ε nOPTMOMI

≤ 2log1−ε nOPTMR

Thus, (γOA , γ
O
B ) is a 2log1−ε n approximation for the optimal Min-Rep solution where n is the number

of states in the MDP ofMOMI(MR). Now recalling that n ≤ ñc for fixed constant c. We therefore
have that (γOA , γ

O
B ) is a 2log1−ε ñc = 2c

1−ε log1−ε ñ ≤ c′ · 2log1−ε ñ approximation for a constant c′.

Choosing ε sufficiently small, we have that c′ · 2log1−ε ñ ≤ 2log1−ε′ ñ for sufficiently large ñ.

Thus, our polynomial-time algorithm is a 2log1−ε′ ñ-approximation for Min-Rep for ε′ > 0, thereby
contradicting Lemma 1. We conclude that MOMI cannot be 2log1−ε n-approximated.

Theorem 2. A-MOMI has the following properties:

1. A-MOMI runs in polynomial time.

2. It guarantees that the MDP is solved within ` iterations using the option set acquired by
A-MOMI O.

3. If the MDP is deterministic, the option set is at mostO(log n) times larger than the smallest
option set possible to solve the MDP within ` iterations.

Theorem 2.1. A-MOMI runs in polynomial time.

Proof. Each step of the procedure runs in polynomial time.

(1) Solving an MDP takes polynomial time Littman et al. (1995). To compute d we need to solve
MDPs at most |S| times. Thus, it runs in polynomial time.

(4) We solve the set cover using a polynomial time approximation algorithm Hochbaum (1982)
which runs in O(|S|3), thus run in polynomial time.

(2), (3), and (5) Immediate.

Theorem 2.2. A-MOMI guarantees that the MDP is solved within ` iterations using the option set
O.

Proof. A state s ∈ X+
g reaches optimal within ` steps by definition. For every state s ∈ S \ X+

g ,
the set cover guarantees that we have Xs′ ∈ C such that d(s, s′) < `. As we generate an option
from s′ to g, s′ reaches to optimal value with 1 step. Thus, s reaches to ε-optimal value within
d(s, s′) + 1 ≤ `. Therefore, every state reaches ε-optimal value within ` steps.

Theorem 2.3. If the MDP is deterministic, the option set is at most O(log n) times larger than the
smallest option set possible to solve the MDP within ` iterations.

Proof. Using a suboptimal algorithm by Chvatal 1979 we get C such that |C| ≤ O(log n)|C∗|. Thus,
|O| = |C| ≤ O(log n)|C∗| = O(log n)|O∗|.

1.3 A-MIMO

The approximation algorithm for MIMO (A-MIMO) is as follows.

1. Compute an asymmetric distance function dε(s, s′) : S × S → N representing the number
of iterations for a state s to reach its ε-optimal value if we add a point option from a state
s′ to a goal state g.

2. Using this distance function, solve an asymmetric k-center problem, which finds a set of
center states that minimizes the maximum number of iterations for every state to converge.
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3. Generate point options with initiation states set to the center states in the solution of the
asymmetric k-center, and termination states set to the goal.

Theorem 2.4. A-MIMO runs in polynomial time.

Proof. Each step of the procedure runs in polynomial time.

(1) Solving an MDP takes polynomial time. To compute dwe need to solve MDPs at most |S| times.
Thus, it runs in polynomial time.

(2) The approximation algorithm we deploy for solving the asymmetric-k center which runs in poly-
nomial time Archer (2001). Because the procedure by Archer 2001 terminates immediately after
finding a set of options which guarantees the suboptimality bounds, it tends to find a set of options
smaller than k. In order to use the rest of the options effectively within polynomial time, we use a
procedure Expand to greedily add a few options at once until it finds all k options. We enumerate
all possible set of options of size r = dlog ke (if |O| + log k > k then we set r = k − |O|) and
add a set of options which minimizes ` (breaking ties randomly) to the option set O. We repeat this
procedure until |O| = k. This procedure runs in polynomial time. The number of possible option
set of size r is rCn = O(nr) = O(k). We repeat this procedure at most dk/ log ke times, thus the
total computation time is bounded by O(k2/ log k).

(3) Immediate.

Therefore, A-MIMO runs in polynomial time.

Before we show that it is sufficient to consider a set of options with its terminal state set to the goal
state of the MDP.

Lemma 4. There exists an optimal option set for MIMO and MOMI with all terminal state set to
the goal state.

Proof. Assume there exists an option with terminal state set to a state other than the goal state in
the optimal option set O. By triangle inequality, swapping the terminal state to the goal state will
monotonically decrease d(s, g) for every state. By swapping every such option we can construct an
option set O′ with L(O′) ≤ L(O).

Lemma imply that discovering the best option set among option sets with their terminal state fixed
to the goal state is sufficient to find the best option set in general. Therefore, our algorithms seek to
discover options with termination state fixed to the goal state.

Using the option set acquired, the number of iterations to solve the MDP is bounded by P (C). To
prove this we first generalize the definition of the distance function to take a state and a set of states
as arguments dε : S × 2S → N. Let dε(s, C) the number of iterations for s to converge ε-optimal if
every state s′ ∈ C has converged to ε-optimal: dε(s, C) := min(d′ε(s), 1 + d′ε(s, C))− 1. As adding
an option will never make the number of iterations larger,

Lemma 5.
d(s, C) ≤ min

s′∈C
d(s, s′). (1)

Using this, we show the following proposition.

Theorem 2.5. The number of iterations to solve the MDP using the acquired options is upper
bounded by P (C).

Proof. P (C) = maxs∈S minc∈C d(s, c) ≥ maxs∈S d(s, C) = L(O) (using Equation 2). Thus P (C)
is an upper bound for L(O).

The reason why P (C) does not always give us the exact number of iterations is because adding two
options starting from s1, s2 may make the convergence of s0 faster than d(s0, s1) or d(s0, s2). Ex-
ample: Figure 5 is an example of such an MDP. From s0 it may transit to s1 and s2 with probability
0.5 each. Without any options, the value function converges to exactly optimal value for every state
with 3 steps. Adding an option either from s1 or s2 to g does not shorten the iteration for s0 to
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s0

s1 s2

s3

g

Figure 4: An example of an MDP where d(s, C) < mins′∈C d(s, s′). Here the transition induced
by the optimal policy is stochastic, thus from s0 one may go to s1 and s2 by probability 0.5 each.
Either adding an option from s1 or s2 to g does not make the convergence faster, but adding both
makes it faster.

converge. However, if we add two options from s1 and s2 to g, s0 converges within 2 steps, thus the
MDP is solved with 2 steps.

The equality of the statement 2 holds if the MDP is deterministic. That is, d(s, C) = mins′∈C d(s, s′)
for deterministic MDP.

Theorem 2.6. If the MDP is deterministic, it has a bounded suboptimality of log∗ k.

Proof. First we show P (C∗) = L(O∗) for deterministic MDP. From d(s, C) = mins′∈C d(s, s′),
P (C∗) = maxs∈S minc∈C∗ d(s, c) = maxs∈S d(s, C∗) = L(O∗).

The asymmetric k-center solver guarantees that the output C satisfies P (C) ≤ c(log∗ k +
O(1))P (C∗) where n is the number of nodes Archer (2001). Let MIMO(M, ε, k) be an instance
of MIMO. We convert this instance to an instance of asymmetric k-center AsymKCenter(U , d, k),
where |U| = |S|. By solving the asymmetric k-center with the approximation algorithm, we
get a solution C which satisfies P (C) ≤ c(log∗ k + O(1))P (C∗). Thus, the output of the algo-
rithm O satisfies L(O) = P (C) ≤ c(log∗ k + O(1))P (C∗) = c(log∗ k + O(1))L(O∗). Thus,
L(O) ≤ c(log∗ k +O(1))L(O∗) is derived.

Before we show that it is sufficient to consider a set of options with its terminal state set to the goal
state of the MDP.

Lemma 6. There exists an optimal option set for MIMO and MOMI with all terminal state set to
the goal state.

Proof. Assume there exists an option with terminal state set to a state other than the goal state in
the optimal option set O. By triangle inequality, swapping the terminal state to the goal state will
monotonically decrease d(s, g) for every state. By swapping every such option we can construct an
option set O′ with L(O′) ≤ L(O).

Lemma imply that discovering the best option set among option sets with their terminal state fixed
to the goal state is sufficient to find the best option set in general. Therefore, our algorithms seek to
discover options with termination state fixed to the goal state.

Using the option set acquired, the number of iterations to solve the MDP is bounded by P (C). To
prove this we first generalize the definition of the distance function to take a state and a set of states
as arguments dε : S × 2S → N. Let dε(s, C) the number of iterations for s to converge ε-optimal if
every state s′ ∈ C has converged to ε-optimal: dε(s, C) := min(d′ε(s), 1 + d′ε(s, C))− 1. As adding
an option will never make the number of iterations larger,

Lemma 7.
d(s, C) ≤ min

s′∈C
d(s, s′). (2)

Using this, we show the following proposition.
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s1 s2

s3
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Figure 5: An example of an MDP where d(s, C) < mins′∈C d(s, s′). Here the transition induced
by the optimal policy is stochastic, thus from s0 one may go to s1 and s2 by probability 0.5 each.
Either adding an option from s1 or s2 to g does not make the convergence faster, but adding both
makes it faster.

Theorem 2.7. The number of iterations to solve the MDP using the acquired options is upper
bounded by P (C).

Proof. P (C) = maxs∈S minc∈C d(s, c) ≥ maxs∈S d(s, C) = L(O) (using Equation 2). Thus P (C)
is an upper bound for L(O).

The reason why P (C) does not always give us the exact number of iterations is because adding two
options starting from s1, s2 may make the convergence of s0 faster than d(s0, s1) or d(s0, s2). Ex-
ample: Figure 5 is an example of such an MDP. From s0 it may transit to s1 and s2 with probability
0.5 each. Without any options, the value function converges to exactly optimal value for every state
with 3 steps. Adding an option either from s1 or s2 to g does not shorten the iteration for s0 to
converge. However, if we add two options from s1 and s2 to g, s0 converges within 2 steps, thus the
MDP is solved with 2 steps.

The equality of the statement 2 holds if the MDP is deterministic. That is, d(s, C) = mins′∈C d(s, s′)
for deterministic MDP.

Theorem 2.8. If the MDP is deterministic, it has a bounded suboptimality of log∗ k.

Proof. First we show P (C∗) = L(O∗) for deterministic MDP. From d(s, C) = mins′∈C d(s, s′),
P (C∗) = maxs∈S minc∈C∗ d(s, c) = maxs∈S d(s, C∗) = L(O∗).

The asymmetric k-center solver guarantees that the output C satisfies P (C) ≤ c(log∗ k +
O(1))P (C∗) where n is the number of nodes Archer (2001). Let MIMO(M, ε, k) be an instance
of MIMO. We convert this instance to an instance of asymmetric k-center AsymKCenter(U , d, k),
where |U| = |S|. By solving the asymmetric k-center with the approximation algorithm, we
get a solution C which satisfies P (C) ≤ c(log∗ k + O(1))P (C∗). Thus, the output of the algo-
rithm O satisfies L(O) = P (C) ≤ c(log∗ k + O(1))P (C∗) = c(log∗ k + O(1))L(O∗). Thus,
L(O) ≤ c(log∗ k +O(1))L(O∗) is derived.

2 FINDING OPTIONS THAT MINIMIZE LEARNING TIME FOR
HARD-EXPLORATION TASKS

Theorem 3. Assume a stochastic shortest path problem to reach a goal g where a non-positive
reward rc ≤ 0 is given for non-goal states and γ = 1. Let P be a random walk transition matrix:
P (s, s′) =

∑
a∈A π(s)T (s, a, s′):

∀g : V πg (s) ≥ rcE[C(G)],

where C(G) = maxs∈S Cs(G) and Cs(G) is a cover time of a transition matrix P starting from
state s.
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Proof. The value of state s is rc times the expected number of steps to reach the goal state. Thus,

V πg (s) = rcE[Hsg]

≥ rcE[max
s′∈S

Hss′ ]

= rcE[Cs(G)]

≥ rcE[C(G)]

Theorem 4. Assume that a random walk induced by a policy π is a uniform random walk. Adding
two options by the algorithm improves the upper bound of the cover time if the multiplicity of the
second smallest eigenvalue is one:

E[C(G′)] ≤ n2 lnn

λ2(L) + F
(1 + o(1)), (3)

where E[C(G′)] is the expected cover time of the augmented graph, F =
(vi−vj)2

6/(λ3−λ2+3/2 , and vi, vj
are the maximum and minimum values of the Fiedler vector. If the multiplicity of the second smallest
eigenvalue is more than one, then adding any single option cannot improve the algebraic connectiv-
ity.

Proof. Assume the multiplicity of the second smallest eigenvalue is one. Let L′ be the graph Lapla-
cian of the graph with an edge inserted to L using the algorithm by Ghosh & Boyd 2006. By adding
a single edge, the algebraic connectivity is guaranteed to increase at least by F :

λ2 ≥ λ2 +
(vi − vj)2

6/(λ3 − λ2) + 3/2
, (4)

and the upper bound of the cover time is guaranteed to decrease:

E[C(G′)] ≤ n2 lnn

λ2
(1 + o(1))

≤ n2 lnn

λ2 +
(vi−vj)2

6/(λ3−λ2)+3/2

(1 + o(1)).

As (vi−vj)2
6/(λ3−λ2)+3/2 is positive,

n2 lnn

λ2 +
(vi−vj)2

6/(λ3−λ2)+3/2

(1 + o(1)) <
n2 lnn

λ2
(1 + o(1)), (5)

thus the upper bound is guaranteed to decrease.

Assume the second smallest eigenvalue is more than one. Then, λ2(L) = λ3(L). From eigenvalue
interlacing Haemers (1995), for any edge insertion, λ2(L) ≤ λ2(L′) ≤ λ3(L). Thus, λ2(L′) =
λ2(L).
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