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Static vs. Dynamic Load Balancing

Static Load Balancing
Hash Distributed A* (Kishimoto et al. 2009)

- Dynamic Load Balancing
Work Stealing (Rao&Kumar 1987)

- Hash usage
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Problem of dynamic load balancing is that it generates potentially exponential

duplicated nodes for graph search.

Hash Distributed A* (HDA™) is a parallel best-first graph search (A*) which distrbutes
nodes according to a hash function which assigns each state to a unique process. As

HDA* relies on the hash function for load balancing, the choice of hash function is
crucial to its performance! However, previous works relied on ad hoc tuning to

achieve good performance, and are not based on an explicit model which we can
estimate the performance on.

Summary

Background: The state-of-the-art strategy of
work distribution for parallel A* is static load
balancing: assigning each state to a process by a
global hash function. However, there was no
quantitative analysis on what kind of hash
function is optimal.

Main contribution: We deploy a model of parallel
A* to examine the eflectiveness of hash
functions. Using the model, we propose graph
partitioning-based approach for work distribution
method. Our experimental results show that our
method  significantly outperforms previous
methods.

Model of Parallel A* with Static Load Balancing
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f(n) < f*+ goal node
1.Expand a node owned by the process (1 = o) + Model Efficiency
2.Send child nodes to their owner (r =1¢_ ) — Assume communication and search
3. Terminates when all nodes are expanded and sent overheads are the dominant overhead
(to ensure optimality)
effesti::effc.effs
_ 1
o= number of edges which require communication _ 4 _ 0.66 (1+¢CO)(1+p(LB-1))
total number of edges 6

LB::maXimum number of nodes owned by a process _ 3 _ 19 Using CO _and LB we can_model the

Why Parallel Search?

Both time and space are bottleneck of A* search. Both
can be addressed by parallel search on distributed

environment.
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Experimental Results and

average number of nodes owned by a process 2.5 walltime efficiency of the Parallel A* on

the graph
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* Communication Efficiency effesti::<1+1.4/6)(1+2(3/2.5_1)):O°42

— Assume communication cost for every pair of
processors are idential

— The degradation of walltime effciency by Experimental Comparison of
communication Actual vs. Model Efficiency
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Model Efliciency

* Evaluated on a 48 core cluster with 6 hashing
functions
* merge&shrink heuristic

Experimental Results
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