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Background: The state-of-the-art strategy of 
work distribution for parallel A* is static load 
balancing: assigning each state to a process by a 
global hash function. However, there was no 
quantitative analysis on what kind of hash 
function is optimal.
Main contribution: We deploy a model of parallel 
A* to examine the effectiveness of hash 
functions. Using the model, we propose graph 
partitioning-based approach for work distribution 
method. Our experimental results show that our 
method significantly outperforms previous 
methods.
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Summary

Why Parallel Search?

Experimental Results and
Model Efficiency
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Model of Parallel A* with Static Load Balancing

Static vs. Dynamic Load Balancing

Problem of dynamic load balancing is that it generates potentially exponential 
duplicated nodes for graph search.
Hash Distributed A* (HDA*) is a parallel best-first graph search (A*) which distrbutes 
nodes according to a hash function which assigns each state to a unique process. As 
HDA* relies on the hash function for load balancing, the choice of hash function is 
crucial to its performance! However, previous works relied on ad hoc tuning to 
achieve good performance, and are not based on an explicit model which we can 
estimate the performance on.

(Kishimoto et al. 2009)Hash Distributed A*
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Static Load Balancing

Workload Graph
f(n) < f* + goal node 

Init

Goal

1.Expand a node owned by the process (t = tproc)
2.Send child nodes to their owner (t = tcom)
3.Terminates when all nodes are expanded and sent

 (to ensure optimality)

CO :=
number of edges which require communication
total number of edges

=
4
6
=0.66

LB :=
maximum number of nodes owned by a process
average number of nodes owned by a process

=
3

2.5
=1.2

● Communication Efficiency
– Assume communication cost for every pair of 

processors are idential
– The degradation of walltime effciency by 

communication

● Search Efficiency
– The ratio of the increase of the number of nodes 

expanded compared to sequential search
– The degradation of walltime efficiency by search 

overhead

eff c :=
1

cCO c :=
tcom
t proc

where

eff s :=
1

1+SO where SO= p(LB−1)

● Model Efficiency
– Assume communication and search 

overheads are the dominant  overhead

=
1

(1+cCO)(1+ p (LB−1))

eff esti :=eff c⋅eff s

Using CO and LB we can model the 
walltime efficiency of the Parallel A* on 
the graph 

eff esti :=
1

(1+1⋅4 /6)(1+2(3 /2.5−1))
=0.42
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Process 1

Supercomputer (TOP 500)
https://www.top500.org/statistics/perfdevel/
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Dynamic Load Balancing
(Rao&Kumar 1987)Work Stealing

Experimental Comparison of
Actual vs. Model Efficiency
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Comparison of Model Efficiency

Both time and space are bottleneck of A* search. Both 
can be addressed by parallel search on distributed 
environment.

● Evaluated on a 48 core cluster with 6 hashing 
functions

● merge&shrink heuristic
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