
A Graph Partitioning-Based Work Distribution Method
for Parallel Best-First Search

 Yuu Jinnai and Alex Fukunaga (RIKEN, The University of Tokyo)

Background: The state-of-the-art strategy of
work distribution for parallel A* is static load
balancing: assigning each state to a process by a
global hash function. However, there was no
quantitative analysis on what kind of hash
function is optimal.
Main contribution: We deploy a model of parallel
A* to examine the effectiveness of hash
functions. Using the model, we propose graph
partitioning-based approach for work distribution
method. Our experimental results show that our
method significantly outperforms previous
methods.

Background: The state-of-the-art strategy of
work distribution for parallel A* is static load
balancing: assigning each state to a process by a
global hash function. However, there was no
quantitative analysis on what kind of hash
function is optimal.
Main contribution: We deploy a model of parallel
A* to examine the effectiveness of hash
functions. Using the model, we propose graph
partitioning-based approach for work distribution
method. Our experimental results show that our
method significantly outperforms previous
methods.

Summary

Why Parallel Search?

Experimental Results and
Model Efficiency

 0.5

 0.6

 0.7

 0.8

 0.9

 1

ef
f e

st
i

GRAZHDA*/sparsity
FAZHDA*
GAZHDA*

OZHDA*
DAHDA*

ZHDA*
IdealApprox

Model of Parallel A* with Static Load Balancing

Static vs. Dynamic Load Balancing

Problem of dynamic load balancing is that it generates potentially exponential
duplicated nodes for graph search.
Hash Distributed A* (HDA*) is a parallel best-first graph search (A*) which distrbutes
nodes according to a hash function which assigns each state to a unique process. As
HDA* relies on the hash function for load balancing, the choice of hash function is
crucial to its performance! However, previous works relied on ad hoc tuning to
achieve good performance, and are not based on an explicit model which we can
estimate the performance on.

(Kishimoto et al. 2009)Hash Distributed A*

Init

Process0 Process1

Goal

Hash usage
state space

Static Load Balancing

Workload Graph
f(n) < f* + goal node

Init

Goal

1.Expand a node owned by the process (t = tproc)
2.Send child nodes to their owner (t = tcom)
3.Terminates when all nodes are expanded and sent

 (to ensure optimality)

CO :=
number of edges which require communication
total number of edges

=
4
6
=0.66

LB :=
maximum number of nodes owned by a process
average number of nodes owned by a process

=
3

2.5
=1.2

● Communication Efficiency
– Assume communication cost for every pair of

processors are idential
– The degradation of walltime effciency by

communication

● Search Efficiency
– The ratio of the increase of the number of nodes

expanded compared to sequential search
– The degradation of walltime efficiency by search

overhead

eff c :=
1

cCO c :=
tcom
t proc

where

eff s :=
1

1+SO where SO= p(LB−1)

● Model Efficiency
– Assume communication and search

overheads are the dominant overhead

=
1

(1+cCO)(1+ p (LB−1))

eff esti :=eff c⋅eff s

Using CO and LB we can model the
walltime efficiency of the Parallel A* on
the graph

eff esti :=
1

(1+1⋅4 /6)(1+2(3 /2.5−1))
=0.42

Process 0

Process 1

Supercomputer (TOP 500)
https://www.top500.org/statistics/perfdevel/

Process 0 Process 1

Dynamic Load Balancing
(Rao&Kumar 1987)Work Stealing

Experimental Comparison of
Actual vs. Model Efficiency

transfer
Duplicate!

Experimental Results

Jinnai&Fukunaga
2017

Kishimoto et al.
2013

Comparison of Model Efficiency

Both time and space are bottleneck of A* search. Both
can be addressed by parallel search on distributed
environment.

● Evaluated on a 48 core cluster with 6 hashing
functions

● merge&shrink heuristic

Duplicate!

	Slide 1

